Suppr超能文献

生物大分子晶体的全自动表征与数据收集

Fully Autonomous Characterization and Data Collection from Crystals of Biological Macromolecules.

作者信息

Hutin Stephanie, Van Laer Bart, Mueller-Dieckmann Christoph, Leonard Gordon, Nurizzo Didier, Bowler Matthew W

机构信息

Structural Biology Group, European Synchrotron Radiation Facility.

Grenoble Outstation, European Molecular Biology Laboratory;

出版信息

J Vis Exp. 2019 Mar 22(145). doi: 10.3791/59032.

Abstract

High-brilliance X-ray beams coupled with automation have led to the use of synchrotron-based macromolecular X-ray crystallography (MX) beamlines for even the most challenging projects in structural biology. However, most facilities still require the presence of a scientist on site to perform the experiments. A new generation of automated beamlines dedicated to the fully automatic characterization of, and data collection from, crystals of biological macromolecules has recently been developed. These beamlines represent a new tool for structural biologists to screen the results of initial crystallization trials and/or the collection of large numbers of diffraction data sets, without users having to control the beamline themselves. Here we show how to set up an experiment for automatic screening and data collection, how an experiment is performed at the beamline, how the resulting data sets are processed, and how, when possible, the crystal structure of the biological macromolecule is solved.

摘要

高亮度X射线束与自动化技术相结合,使得基于同步加速器的大分子X射线晶体学(MX)光束线甚至可用于结构生物学中最具挑战性的项目。然而,大多数设施仍需要科学家在现场进行实验。最近开发了新一代自动化光束线,专门用于对生物大分子晶体进行全自动表征和数据收集。这些光束线为结构生物学家提供了一种新工具,用于筛选初始结晶试验的结果和/或收集大量衍射数据集,而无需用户亲自控制光束线。在此,我们展示了如何设置自动筛选和数据收集实验、如何在光束线上进行实验、如何处理所得数据集,以及在可能的情况下如何解析生物大分子的晶体结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验