RoViT, University of Alicante, 03690 San Vicente del Raspeig (Alicante), Spain.
RobInLab, Jaume I University, 12071 Castello de la Plana, Spain.
Sensors (Basel). 2019 Apr 6;19(7):1648. doi: 10.3390/s19071648.
Advances in Robotics are leading to a new generation of assistant robots working in ordinary, domestic settings. This evolution raises new challenges in the tasks to be accomplished by the robots. This is the case for object manipulation where the detect-approach-grasp loop requires a robust recovery stage, especially when the held object slides. Several proprioceptive sensors have been developed in the last decades, such as tactile sensors or contact switches, that can be used for that purpose; nevertheless, their implementation may considerably restrict the gripper's flexibility and functionality, increasing their cost and complexity. Alternatively, vision can be used since it is an undoubtedly rich source of information, and in particular, depth vision sensors. We present an approach based on depth cameras to robustly evaluate the manipulation success, continuously reporting about any object loss and, consequently, allowing it to robustly recover from this situation. For that, a Lab-colour segmentation allows the robot to identify potential robot manipulators in the image. Then, the depth information is used to detect any edge resulting from two-object contact. The combination of those techniques allows the robot to accurately detect the presence or absence of contact points between the robot manipulator and a held object. An experimental evaluation in realistic indoor environments supports our approach.
机器人技术的进步正在引领新一代助理机器人在普通的家庭环境中工作。这种演变给机器人要完成的任务带来了新的挑战。在物体操作方面就是如此,检测-接近-抓取循环需要一个强大的恢复阶段,特别是当被抓住的物体滑动时。在过去几十年中,已经开发了几种本体感受传感器,例如触觉传感器或接触开关,可用于此目的;然而,它们的实施可能会极大地限制夹具的灵活性和功能,增加其成本和复杂性。或者,可以使用视觉,因为它是信息的丰富来源,特别是深度视觉传感器。我们提出了一种基于深度摄像机的方法,以稳健地评估操作的成功,持续报告任何物体的丢失,并因此能够从这种情况中稳健地恢复。为此,Lab 颜色分割允许机器人在图像中识别潜在的机器人操纵器。然后,使用深度信息来检测由于两个物体接触而产生的任何边缘。这些技术的组合使机器人能够准确地检测机器人操纵器和被抓住的物体之间是否存在接触点。在现实的室内环境中的实验评估支持我们的方法。