Dipartimento di Fisica e Astronomia "Galileo Galilei," Sezione Istituto Nazionale di Fisica Nucleare, Università degli Studi di Padova, I-35131 Padova, Italy.
School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8149-8154. doi: 10.1073/pnas.1815394116. Epub 2019 Apr 8.
Topological entanglements severely interfere with important biological processes. For this reason, genomes must be kept unknotted and unlinked during most of a cell cycle. Type II topoisomerase (TopoII) enzymes play an important role in this process but the precise mechanisms yielding systematic disentanglement of DNA in vivo are not clear. Here we report computational evidence that structural-maintenance-of-chromosomes (SMC) proteins-such as cohesins and condensins-can cooperate with TopoII to establish a synergistic mechanism to resolve topological entanglements. SMC-driven loop extrusion (or diffusion) induces the spatial localization of essential crossings, in turn catalyzing the simplification of knots and links by TopoII enzymes even in crowded and confined conditions. The mechanism we uncover is universal in that it does not qualitatively depend on the specific substrate, whether DNA or chromatin, or on SMC processivity; we thus argue that this synergy may be at work across organisms and throughout the cell cycle.
拓扑纠缠严重干扰重要的生物过程。因此,基因组在细胞周期的大部分时间里必须保持无纽结和无连接。II 型拓扑异构酶(TopoII)酶在这个过程中起着重要作用,但产生体内 DNA 系统解缠的精确机制尚不清楚。在这里,我们报告了计算证据,表明结构维持染色体(SMC)蛋白——如黏合蛋白和凝聚素——可以与 TopoII 合作,建立一个协同机制来解决拓扑纠缠。SMC 驱动的环挤压(或扩散)诱导必需交叉点的空间定位,反过来通过 TopoII 酶甚至在拥挤和受限的条件下促进纽结和连接的简化。我们揭示的机制是普遍的,因为它不依赖于特定的底物,无论是 DNA 还是染色质,也不依赖于 SMC 的连续性;因此,我们认为这种协同作用可能在生物体中以及整个细胞周期中起作用。