Suppr超能文献

用于氧还原反应的过渡金属催化剂晶面结构的优化

Optimization of the facet structure of transition-metal catalysts applied to the oxygen reduction reaction.

作者信息

Núñez M, Lansford J L, Vlachos D G

机构信息

Catalysis Center for Energy Innovation (CCEI), Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.

出版信息

Nat Chem. 2019 May;11(5):449-456. doi: 10.1038/s41557-019-0247-4. Epub 2019 Apr 8.

Abstract

Predicting the optimal structure for a catalytic material has been a long-standing goal, but typically an arbitrary active site on a uniform surface is modelled. Identification of the most-active facet structure for structure-sensitive chemistries, such as the oxygen reduction reaction, is lacking. Here we develop an approach to predict the optimal structure of a catalytic material by identifying the active site and identifying the density and spatial arrangement of such sites while minimizing the surface energy. We find that the theoretical peak performance predicted by linear scaling relations is unattainable because of the lack of suitable active sites on low-index planes, as well as geometric and stability constraints. A random array of vacancies results in a modest performance enhancement compared to ideal facets, whereas defect sites with a maximum density in disordered structures significantly increase the catalyst performance. We applied this methodology to the oxygen reduction reaction on defected Pt(111), Pt(100), Au(111) and Au(100) surfaces.

摘要

预测催化材料的最佳结构一直是一个长期目标,但通常是对均匀表面上的任意活性位点进行建模。对于结构敏感的化学反应,如氧还原反应,缺乏对最具活性的晶面结构的识别。在此,我们开发了一种方法,通过识别活性位点以及确定这些位点的密度和空间排列,同时使表面能最小化,来预测催化材料的最佳结构。我们发现,由于低指数平面上缺乏合适的活性位点以及几何和稳定性限制,线性标度关系预测的理论峰值性能是无法实现的。与理想晶面相比,随机排列的空位阵列会使性能有适度提高,而无序结构中具有最大密度的缺陷位点会显著提高催化剂性能。我们将这种方法应用于有缺陷的Pt(111)、Pt(100)、Au(111)和Au(100)表面上的氧还原反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验