Tom Jessica C, Brilmayer Robert, Schmidt Johannes, Andrieu-Brunsen Annette
Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
Technische Universität Berlin, Fakultät II, Institut für Chemie, Hardenbergstr. 40, 10623 Berlin, Germany.
Polymers (Basel). 2017 Oct 23;9(10):539. doi: 10.3390/polym9100539.
Nature as the ultimate inspiration can direct, gate, and selectively transport species across channels to fulfil a specific targeted function. Harnessing such precision over local structure and functionality at the nanoscale is expected to lead to indispensable developments in synthetic channels for application in catalysis, filtration and sensing, and in drug delivery. By combining mesoporous materials with localised charge-switchable poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes, precisely controlling pore filling and exploring the possibility of incorporating two different responsive polymers, we hope to approach the precision control of natural systems in the absence of an external force. Here, we report a simple one-step approach to prepare a mesoporous silica thin film with ~8 nm pores functionalised with a photoiniferter by combining sol⁻gel chemistry and evaporation-induced self-assembly (EISA). We show that surface-initiated photoiniferter-mediated polymerisation (SI-PIMP) allows the incorporation of a high polymer content up to geometrical pore blocking by the simple application of UV light in the presence of a monomer and solvent, proceeding in a controlled manner in pore sizes below 10 nm, with the potential to tune the material properties through the formation of surface-grafted block copolymers.
大自然作为最终的灵感源泉,可以引导、控制并选择性地将物质跨通道传输,以实现特定的目标功能。在纳米尺度上利用这种对局部结构和功能的精确控制,有望在用于催化、过滤、传感及药物递送的合成通道方面取得不可或缺的进展。通过将介孔材料与局部电荷可切换的聚甲基丙烯酸2-(二甲基氨基)乙酯(PDMAEMA)刷相结合,精确控制孔填充,并探索引入两种不同响应性聚合物的可能性,我们希望在没有外力的情况下接近自然系统的精确控制。在此,我们报告一种简单的一步法,通过溶胶 - 凝胶化学与蒸发诱导自组装(EISA)相结合,制备具有约8 nm孔径且用光引发转移终止剂功能化的介孔二氧化硅薄膜。我们表明,表面引发的光引发转移终止剂介导的聚合反应(SI-PIMP)能够通过在单体和溶剂存在下简单施加紫外光,引入高达几何孔堵塞量的高聚合物含量,在孔径小于10 nm的情况下以可控方式进行,并有可能通过形成表面接枝的嵌段共聚物来调节材料性能。