Suppr超能文献

用于组织工程主动脉心脏瓣膜的含磁赤铁矿(γ-Fe₂O₃)的热塑性聚氨酯(TPU)/聚左旋乳酸(PLLA)电纺纳米纤维的3D生物制造

3D Biofabrication of Thermoplastic Polyurethane (TPU)/Poly-l-lactic Acid (PLLA) Electrospun Nanofibers Containing Maghemite (γ-Fe₂O₃) for Tissue Engineering Aortic Heart Valve.

作者信息

Fallahiarezoudar Ehsan, Ahmadipourroudposht Mohaddeseh, Yusof Noordin Mohd, Idris Ani, Ngadiman Nor Hasrul Akhmal

机构信息

Department of Materials, Manufacturing & Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.

Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.

出版信息

Polymers (Basel). 2017 Nov 6;9(11):584. doi: 10.3390/polym9110584.

Abstract

Valvular dysfunction as the prominent reason of heart failure may causes morbidity and mortality around the world. The inability of human body to regenerate the defected heart valves necessitates the development of the artificial prosthesis to be replaced. Besides, the lack of capacity to grow, repair or remodel of an artificial valves and biological difficulty such as infection or inflammation make the development of tissue engineering heart valve (TEHV) concept. This research presented the use of compound of poly-l-lactic acid (PLLA), thermoplastic polyurethane (TPU) and maghemite nanoparticle (γ-Fe₂O₃) as the potential biomaterials to develop three-dimensional (3D) aortic heart valve scaffold. Electrospinning was used for fabricating the 3D scaffold. The steepest ascent followed by the response surface methodology was used to optimize the electrospinning parameters involved in terms of elastic modulus. The structural and porosity properties of fabricated scaffold were characterized using FE-SEM and liquid displacement technique, respectively. The 3D scaffold was then seeded with aortic smooth muscle cells (AOSMCs) and biological behavior in terms of cell attachment and proliferation during 34 days of incubation was characterized using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and confocal laser microscopy. Furthermore, the mechanical properties in terms of elastic modulus and stiffness were investigated after cell seeding through macro-indentation test. The analysis indicated the formation of ultrafine quality of nanofibers with diameter distribution of 178 ± 45 nm and 90.72% porosity. In terms of cell proliferation, the results exhibited desirable proliferation (109.32 ± 3.22% compared to the control) of cells over the 3D scaffold in 34 days of incubation. The elastic modulus and stiffness index after cell seeding were founded to be 22.78 ± 2.12 MPa and 1490.9 ± 12 Nmm², respectively. Overall, the fabricated 3D scaffold exhibits desirable structural, biological and mechanical properties and has the potential to be used in vivo.

摘要

瓣膜功能障碍作为心力衰竭的主要原因,可能在全球范围内导致发病和死亡。人体无法再生受损的心脏瓣膜,因此需要开发人工假体进行替换。此外,人工瓣膜缺乏生长、修复或重塑的能力,以及诸如感染或炎症等生物学难题,促使了组织工程心脏瓣膜(TEHV)概念的发展。本研究提出使用聚左旋乳酸(PLLA)、热塑性聚氨酯(TPU)和磁赤铁矿纳米颗粒(γ-Fe₂O₃)的复合物作为潜在的生物材料来开发三维(3D)主动脉心脏瓣膜支架。采用静电纺丝法制备3D支架。随后采用最速上升法和响应面法,根据弹性模量对涉及的静电纺丝参数进行优化。分别使用场发射扫描电子显微镜(FE-SEM)和液体置换技术对制备支架的结构和孔隙率特性进行表征。然后将主动脉平滑肌细胞(AOSMCs)接种到3D支架上,并使用MTT(3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴盐)测定法和共聚焦激光显微镜对培养34天期间细胞附着和增殖方面的生物学行为进行表征。此外,通过宏观压痕试验研究了细胞接种后支架在弹性模量和刚度方面的力学性能。分析表明形成了直径分布为178±45nm且孔隙率为90.72%的超细纳米纤维。在细胞增殖方面,结果显示在34天的培养期内,细胞在3D支架上具有理想的增殖效果(与对照组相比为109.32±3.22%)。细胞接种后的弹性模量和刚度指数分别为22.78±2.12MPa和1490.9±12Nmm²。总体而言,制备的3D支架具有理想的结构、生物学和力学性能,具有体内应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a2/6418800/90e732fa2834/polymers-09-00584-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验