Suppr超能文献

挥发分是如何逃离其浅层岩浆房的?

How do volatiles escape their shallow magmatic hearth?

机构信息

1 School of Earth and Ocean Sciences, Cardiff University , Cardiff , UK.

2 Department of Earth Sciences, ETH , Zürich , Switzerland.

出版信息

Philos Trans A Math Phys Eng Sci. 2019 Feb 25;377(2139):20180017. doi: 10.1098/rsta.2018.0017.

Abstract

Only a small fraction (approx. 1-20%) of magmas generated in the mantle erupt at the surface. While volcanic eruptions are typically considered as the main exhaust pipes for volatile elements to escape into the atmosphere, the contribution of magma reservoirs crystallizing in the crust is likely to dominate the volatile transfer from depth to the surface. Here, we use multiscale physical modelling to identify and quantify the main mechanisms of gas escape from crystallizing magma bodies. We show that most of the outgassing occurs at intermediate to high crystal fraction, when the system has reached a mature mush state. It is particularly true for shallow volatile-rich systems that tend to exsolve volatiles through second boiling, leading to efficient construction of gas channels as soon as the crystallinity reaches approximately 40-50 vol.%. We, therefore, argue that estimates of volatile budgets based on volcanic activity may be misleading because they tend to significantly underestimate the magmatic volatile flux and can provide biased volatile compositions. Recognition of the compositional signature and volumetric dominance of intrusive outgassing is, therefore, necessary to build robust models of volatile recycling between the mantle and the surface. This article is part of the Theo Murphy meeting issue 'Magma reservoir architecture and dynamics'.

摘要

只有一小部分(约 1-20%)地幔中产生的岩浆在地表喷发。虽然火山喷发通常被认为是挥发物元素逸入大气的主要排气管,但在壳中结晶的岩浆储层对从深部向地表传输挥发物的贡献可能更为重要。在这里,我们使用多尺度物理建模来识别和量化结晶岩浆体中气体逸出的主要机制。我们表明,大部分放气发生在中间到高晶体分数时,当系统达到成熟的糊状状态。对于富含浅层挥发物的系统来说尤其如此,这些系统往往通过二次沸腾释放挥发物,从而在结晶度达到约 40-50 体积%时,有效地构建气体通道。因此,我们认为基于火山活动的挥发物预算估计可能会产生误导,因为它们往往会大大低估岩浆挥发通量,并提供有偏差的挥发物成分。因此,认识到侵入性放气的组成特征和体积优势对于建立地幔和地表之间挥发物再循环的稳健模型是必要的。本文是 Theo Murphy 会议议题“岩浆储层结构和动力学”的一部分。

相似文献

1
How do volatiles escape their shallow magmatic hearth?挥发分是如何逃离其浅层岩浆房的?
Philos Trans A Math Phys Eng Sci. 2019 Feb 25;377(2139):20180017. doi: 10.1098/rsta.2018.0017.
2
The lateral growth and coalesence of magma systems.岩浆系统的侧向生长和合并。
Philos Trans A Math Phys Eng Sci. 2019 Feb 25;377(2139):20180005. doi: 10.1098/rsta.2018.0005.
3
Architecture and dynamics of magma reservoirs.岩浆储层的结构和动力学。
Philos Trans A Math Phys Eng Sci. 2019 Feb 25;377(2139):20180298. doi: 10.1098/rsta.2018.0298.
6
Formation and dynamics of magma reservoirs.岩浆储层的形成和动力学。
Philos Trans A Math Phys Eng Sci. 2019 Feb 25;377(2139):20180019. doi: 10.1098/rsta.2018.0019.

本文引用的文献

6
Capillary fracturing in granular media.颗粒介质中的毛细压裂。
Phys Rev Lett. 2012 Jun 29;108(26):264504. doi: 10.1103/PhysRevLett.108.264504. Epub 2012 Jun 28.
7

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验