文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

飞行汽车在可持续交通中的作用。

Role of flying cars in sustainable mobility.

作者信息

Kasliwal Akshat, Furbush Noah J, Gawron James H, McBride James R, Wallington Timothy J, De Kleine Robert D, Kim Hyung Chul, Keoleian Gregory A

机构信息

Research and Innovation Center, Ford Motor Company, Dearborn, Michigan, 48121, USA.

Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, Michigan, 48109, USA.

出版信息

Nat Commun. 2019 Apr 9;10(1):1555. doi: 10.1038/s41467-019-09426-0.


DOI:10.1038/s41467-019-09426-0
PMID:30967534
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6456499/
Abstract

Interest and investment in electric vertical takeoff and landing aircraft (VTOLs), commonly known as flying cars, have grown significantly. However, their sustainability implications are unclear. We report a physics-based analysis of primary energy and greenhouse gas (GHG) emissions of VTOLs vs. ground-based cars. Tilt-rotor/duct/wing VTOLs are efficient when cruising but consume substantial energy for takeoff and climb; hence, their burdens depend critically on trip distance. For our base case, traveling 100 km (point-to-point) with one pilot in a VTOL results in well-to-wing/wheel GHG emissions that are 35% lower but 28% higher than a one-occupant internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV), respectively. Comparing fully loaded VTOLs (three passengers) with ground-based cars with an average occupancy of 1.54, VTOL GHG emissions per passenger-kilometer are 52% lower than ICEVs and 6% lower than BEVs. VTOLs offer fast, predictable transportation and could have a niche role in sustainable mobility.

摘要

对电动垂直起降飞机(VTOL),也就是通常所说的飞行汽车的兴趣和投资显著增加。然而,它们对可持续性的影响尚不清楚。我们报告了一项基于物理学的分析,对比了垂直起降飞机与地面汽车的一次能源和温室气体(GHG)排放情况。倾转旋翼/涵道/机翼式垂直起降飞机在巡航时效率较高,但起飞和爬升时消耗大量能源;因此,它们的负担严重取决于行程距离。在我们的基础案例中,一名飞行员乘坐垂直起降飞机飞行100公里(点对点),其从井口到机翼/车轮的温室气体排放量分别比单人内燃机汽车(ICEV)低35%,但比纯电动汽车(BEV)高28%。将满载的垂直起降飞机(搭载三名乘客)与平均载客量为乘客每公里的温室气体排放量比内燃机汽车低52%,比纯电动汽车低6%。垂直起降飞机提供快速、可预测的交通方式,并且在可持续交通中可能发挥特定作用。 1.54人的地面汽车相比较,垂直起降飞机

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600f/6456499/f5c3b739d690/41467_2019_9426_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600f/6456499/abea8358f187/41467_2019_9426_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600f/6456499/45e2520274d7/41467_2019_9426_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600f/6456499/e5e7a4ac9eb0/41467_2019_9426_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600f/6456499/368e44726a52/41467_2019_9426_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600f/6456499/dcab2061d0e4/41467_2019_9426_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600f/6456499/f5c3b739d690/41467_2019_9426_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600f/6456499/abea8358f187/41467_2019_9426_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600f/6456499/45e2520274d7/41467_2019_9426_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600f/6456499/e5e7a4ac9eb0/41467_2019_9426_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600f/6456499/368e44726a52/41467_2019_9426_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600f/6456499/dcab2061d0e4/41467_2019_9426_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/600f/6456499/f5c3b739d690/41467_2019_9426_Fig6_HTML.jpg

相似文献

[1]
Role of flying cars in sustainable mobility.

Nat Commun. 2019-4-9

[2]
Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.

J Environ Manage. 2022-4-15

[3]
Flying cars economically favor battery electric over fuel cell and internal combustion engine.

PNAS Nexus. 2023-3-14

[4]
Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis.

Environ Sci Technol. 2016-6-28

[5]
Life Cycle Greenhouse Gas Emissions of the USPS Next-Generation Delivery Vehicle Fleet.

Environ Sci Technol. 2022-9-20

[6]
Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.

Environ Sci Technol. 2012-5-21

[7]
China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles.

Environ Sci Technol. 2019-5-7

[8]
Life Cycle Greenhouse Gas Emissions for Last-Mile Parcel Delivery by Automated Vehicles and Robots.

Environ Sci Technol. 2021-8-17

[9]
Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.

Environ Sci Technol. 2018-2-8

[10]
Hidden delays of climate mitigation benefits in the race for electric vehicle deployment.

Nat Commun. 2023-5-31

引用本文的文献

[1]
Human-Caused High Direct Mortality in Birds: Unsustainable Trends and Ameliorative Actions.

Animals (Basel). 2024-12-31

[2]
Human-wildlife conflicts in the aerial habitat: Wind farms are just the beginning.

Sci Prog. 2024

[3]
Critical assessment of emissions, costs, and time for last-mile goods delivery by drones versus trucks.

Sci Rep. 2023-7-21

[4]
Flying cars economically favor battery electric over fuel cell and internal combustion engine.

PNAS Nexus. 2023-3-14

[5]
Communications and High-Precision Positioning (CHP2): Hardware Architecture, Implementation, and Validation.

Sensors (Basel). 2023-1-25

[6]
Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends.

Intell Serv Robot. 2023

[7]
The promise of energy-efficient battery-powered urban aircraft.

Proc Natl Acad Sci U S A. 2021-11-9

本文引用的文献

[1]
Author Correction: Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery.

Nat Commun. 2018-3-8

[2]
Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles.

Environ Sci Technol. 2016-9-5

[3]
Lithium Sulfur Primary Battery with Super High Energy Density: Based on the Cauliflower-like Structured C/S Cathode.

Sci Rep. 2015-10-12

[4]
Factors associated with the safety of EMS helicopters.

Am J Emerg Med. 1991-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索