Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA.
J Environ Manage. 2022 Apr 15;308:114592. doi: 10.1016/j.jenvman.2022.114592. Epub 2022 Feb 1.
Electric vehicles (EVs) can reduce transportation-related greenhouse gas (GHG) emissions, given the planned electric grid decarbonization. Regulations can also reduce internal combustion engine vehicle's (ICEVs) emissions by mandating increased fuel economies or ethanol-gasoline mixes. Factors such as fuel economy, electricity grid mix, vehicle choice, and temperature affect EV GHG emissions relative to ICEVs, and successfully decarbonizing the transportation sector depends on understanding their combined effects. We use life-cycle assessment to compare the EV and ICEV well-to-wheel GHG emissions in the United States and four other states from 2018 to 2030. We found lower emissions for EVs than ICEVs in most conditions considered. In New York state, where natural gas power plants replace nuclear energy, GHG emissions of electricity generation increase over time after 2020. Future ICEVs can have comparable emissions to EVs due to fuel economy increase. Therefore, EV and ICEV can together lower transportation GHG emissions at a faster pace.
Transportation-related greenhouse gas (GHG) emissions can be reduced by (a) increasing the share of electric vehicles (EVs) and (b) reducing GHG emissions of internal combustion engine vehicles (ICEVs) by mandating increased fuel economies or ethanol-gasoline mixes. Factors, such as fuel economy, electricity grid mix, vehicle choice, and temperature affect EVs' relative GHG emissions compared to ICEVs, and understanding their combined effect is necessary for a successful decarbonization of the transportation sector. We used life-cycle assessment to evaluate the simultaneous effect of the above-mentioned factors on the well-to-wheel GHG emissions of EVs and ICEVs from 2018 to 2030. The analysis was performed for the United States (US) average and state-level for Arizona, California, New York, and Oregon. Our results showed lower GHG emissions for EVs than ICEVs for most conditions considered. GHG emissions are expected to decrease in the US on average by 5% for EVs and 27% for ICEVs in 2030 compared to 2018. In 2030, the ICEV well-to-wheel GHG emissions were comparable to those of the EVs in the US average and Arizona. EVs perform best in California and Oregon throughout the considered period. In regions, such as New York, EVs driven 2021 and after will have higher GHG emissions than ICEVs, as natural gas power plants are replacing nuclear energy. While EV GHG emissions decrease over time due to grid decarbonization, future ICEVs can lower the GHG emissions, especially for larger vehicles, where EVs might not be the best option. Therefore, EV and ICEV can together lower transportation GHG emissions at a faster pace.
考虑到计划中的电网脱碳,电动汽车 (EV) 可以减少与交通相关的温室气体 (GHG) 排放。通过强制提高燃油经济性或乙醇-汽油混合比,法规也可以减少内燃机汽车 (ICEV) 的排放。燃油经济性、电网组合、车辆选择和温度等因素会影响电动汽车相对于 ICEV 的 GHG 排放,成功实现交通部门脱碳取决于对这些综合因素的理解。我们使用生命周期评估来比较美国和其他四个州 2018 年至 2030 年期间的电动汽车和 ICEV 的全生命周期温室气体排放。在大多数情况下,我们发现电动汽车的排放低于 ICEV。在纽约州,由于天然气发电厂取代核能,2020 年后,发电的温室气体排放量会随着时间的推移而增加。由于燃油经济性的提高,未来的 ICEV 可以具有与电动汽车相当的排放。因此,电动汽车和 ICEV 可以共同更快地降低交通温室气体排放。
与交通相关的温室气体 (GHG) 排放可以通过以下方式减少:(a) 增加电动汽车 (EV) 的份额;(b) 通过强制提高燃油经济性或乙醇-汽油混合比来减少内燃机汽车 (ICEV) 的 GHG 排放。燃油经济性、电网组合、车辆选择和温度等因素会影响电动汽车相对于 ICEV 的相对 GHG 排放,了解它们的综合影响对于交通部门的成功脱碳是必要的。我们使用生命周期评估来评估上述因素对 2018 年至 2030 年期间电动汽车和 ICEV 的全生命周期温室气体排放的同时影响。该分析针对美国(US)平均水平以及亚利桑那州、加利福尼亚州、纽约州和俄勒冈州的州级水平进行。我们的结果表明,在大多数情况下,电动汽车的 GHG 排放低于 ICEV。与 2018 年相比,到 2030 年,美国平均而言,电动汽车的 GHG 排放量将减少 5%,而 ICEV 的排放量将减少 27%。2030 年,ICEV 的全生命周期 GHG 排放量与美国平均水平和亚利桑那州的排放量相当。在加利福尼亚州和俄勒冈州,整个考虑期间,电动汽车的表现都优于 ICEV。在纽约等地区,2021 年及以后驾驶的电动汽车的 GHG 排放量将高于 ICEV,因为天然气发电厂正在取代核能。虽然随着电网脱碳,电动汽车的 GHG 排放量会随着时间的推移而减少,但未来的 ICEV 可以降低 GHG 排放,尤其是对于更大的车辆,在这种情况下,电动汽车可能不是最佳选择。因此,电动汽车和 ICEV 可以共同更快地降低交通温室气体排放。