Sosorev Andrey Yu, Nuraliev Muzaffar K, Feldman Elizaveta V, Maslennikov Dmitry R, Borshchev Oleg V, Skorotetcky Maxim S, Surin Nikolay M, Kazantsev Maxim S, Ponomarenko Sergei A, Paraschuk Dmitry Yu
Faculty of Physics and International Laser Center, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
Phys Chem Chem Phys. 2019 Jun 5;21(22):11578-11588. doi: 10.1039/c9cp00910h.
Owing to the combination of efficient charge transport and bright luminescence, thiophene-phenylene co-oligomers (TPCOs) are promising materials for organic light-emitting devices such as diodes, transistors and lasers. The synthetic flexibility of TPCOs enables facile tuning of their properties. In this study, we address the effect of various electron-donating and electron-withdrawing symmetric terminal substituents (fluorine, methyl, trifluoromethyl, methoxy, tert-butyl, and trimethylsilyl) on frontier orbitals, charge distribution, static polarizabilities, molecular vibrations, bandgaps and photoluminescence quantum yields of 5,5'-diphenyl-2,2'-bithiophene (PTTP). By combining DFT calculations with cyclic voltammetry and absorption, photoluminescence, and Raman spectroscopies, we show that symmetric terminal substitution tunes the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies of TPCOs within a range of ∼0.7 eV, shifts the frequencies of the vibrational modes associated with the phenyl rings, changes the photoluminescence quantum yield by about two-fold and slightly changes the bandgap by ∼0.1 eV. We demonstrate that these effects are governed by two factors: the Hammet constant of the substituents and their involvement in the π-conjugation/hyperconjugation described by the effective conjugation length of the substituted oligomer. A detailed picture underlying the effect of the terminal substituents on the electronic, vibrational and optical properties of TPCOs is presented. Overall, the unraveled relationships between the structure and the properties of the substituted PTTPs should facilitate a rational design of π-conjugated (co-)oligomers for efficient organic optoelectronic devices.
由于具有高效的电荷传输和明亮的发光特性,噻吩-亚苯基共低聚物(TPCOs)是用于二极管、晶体管和激光器等有机发光器件的有前途的材料。TPCOs的合成灵活性使其性能易于调节。在本研究中,我们研究了各种供电子和吸电子对称末端取代基(氟、甲基、三氟甲基、甲氧基、叔丁基和三甲基硅基)对5,5'-二苯基-2,2'-联噻吩(PTTP)的前沿轨道、电荷分布、静态极化率、分子振动、带隙和光致发光量子产率的影响。通过将密度泛函理论(DFT)计算与循环伏安法以及吸收光谱、光致发光光谱和拉曼光谱相结合,我们表明对称末端取代在约0.7 eV的范围内调节TPCOs的最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)能量,改变与苯环相关的振动模式的频率,使光致发光量子产率改变约两倍,并使带隙略微改变约0.1 eV。我们证明这些效应受两个因素支配:取代基的哈米特常数及其通过取代低聚物的有效共轭长度所描述的参与π共轭/超共轭的程度。给出了末端取代基对TPCOs的电子、振动和光学性质影响的详细图景。总体而言,所揭示的取代PTTPs的结构与性质之间的关系应有助于合理设计用于高效有机光电器件的π共轭(共)低聚物。