Trukhanov Vasiliy A, Dominskiy Dmitry I, Parashchuk Olga D, Feldman Elizaveta V, Surin Nikolay M, Svidchenko Evgeniya A, Skorotetcky Maxim S, Borshchev Oleg V, Paraschuk Dmitry Yu, Sosorev Andrey Yu
Faculty of Physics & International Laser Centre of Lomonosov Moscow State University Leninskiye Gory 1/62 Moscow 119991 Russia
Institute of Spectroscopy of the Russian Academy of Sciences Fizicheskaya St. 5, Troitsk Moscow 108840 Russia.
RSC Adv. 2020 Jul 27;10(47):28128-28138. doi: 10.1039/d0ra03343j.
Properties of the organic semiconductors can be finely tuned changes in their molecular structure. However, the relationship between the molecular structure, molecular packing, and (opto)electronic properties of the organic semiconductors to guide their smart design remains elusive. In this study, we address computationally and experimentally the impact of subtle modification of a thiophene-phenylene co-oligomer CF-PTTP-CF on the molecular properties, crystal structure, charge transport, and optoelectronic properties. This modification consists in the substitution of two C-H atom pairs by N atoms in the thiophene units and hence converting them to thiazole units. A dramatic effect of the N-substitution on the crystal structure-the crossover from the herringbone packing motif to π-stacking-is attributed to significant changes in the molecular electrostatic potential. The changes in the molecular and crystal structure resulting from the N-substitution clearly reveal themselves in the Raman spectra. The increase of the calculated electron mobility in the corresponding crystals as a result of the N-substitution is rationalized in terms of the changes in the molecular and crystal structure. The charge transport, electroluminescence, and photoelectric properties are compared in thin-film organic field-effect transistors based on CF-PTTP-CF and its N-substituted counterpart. An intriguing similarity between the effects of N-substitution in the thiophene rings and fluorination of the thiophene-phenylene oligomer is revealed, which is probably associated with a more general effect of electronegative substitution. The obtained results are anticipated to facilitate the rational design of organic semiconductors.
有机半导体的性质可以通过其分子结构的变化进行精细调节。然而,有机半导体的分子结构、分子堆积与(光)电性质之间的关系,以指导其智能设计,仍然难以捉摸。在本研究中,我们通过计算和实验研究了噻吩-亚苯基共聚物CF-PTTP-CF的细微修饰对其分子性质、晶体结构、电荷传输和光电性质的影响。这种修饰包括在噻吩单元中用N原子取代两对C-H原子对,从而将它们转化为噻唑单元。N取代对晶体结构的显著影响——从人字形堆积模式转变为π堆积——归因于分子静电势的显著变化。N取代导致的分子和晶体结构变化在拉曼光谱中清晰地显现出来。根据分子和晶体结构的变化,对N取代导致相应晶体中计算出的电子迁移率增加进行了合理的解释。在基于CF-PTTP-CF及其N取代对应物的薄膜有机场效应晶体管中比较了电荷传输、电致发光和光电性质。揭示了噻吩环中的N取代与噻吩-亚苯基低聚物的氟化之间有趣的相似性,这可能与电负性取代的更普遍效应有关。预期所获得的结果将有助于有机半导体的合理设计。