State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China.
PLoS One. 2020 Dec 7;15(12):e0242089. doi: 10.1371/journal.pone.0242089. eCollection 2020.
The prediction of web service quality plays an important role in improving user services; it has been one of the most popular topics in the field of Internet services. In traditional collaborative filtering methods, differences in the personalization and preferences of different users have been ignored. In this paper, we propose a prediction method for web service quality based on different types of quality of service (QoS) attributes. Different extraction rules are applied to extract the user preference matrices from the original web data, and the negative value filtering-based top-K method is used to merge the optimization results into the collaborative prediction method. Thus, the individualized differences are fully exploited, and the problem of inconsistent QoS values is resolved. The experimental results demonstrate the validity of the proposed method. Compared with other methods, the proposed method performs better, and the results are closer to the real values.
预测 Web 服务质量在提高用户服务方面起着重要作用;它一直是互联网服务领域中最热门的话题之一。在传统的协同过滤方法中,忽略了不同用户的个性化和偏好的差异。在本文中,我们提出了一种基于不同类型服务质量(QoS)属性的 Web 服务质量预测方法。从原始 Web 数据中应用不同的提取规则来提取用户偏好矩阵,并使用基于负值过滤的 top-K 方法将优化结果合并到协同预测方法中。这样可以充分利用个性化差异,解决 QoS 值不一致的问题。实验结果证明了所提出方法的有效性。与其他方法相比,所提出的方法表现更好,结果更接近真实值。