From the Department of Bioengineering (S.L., X.Z., B.L.), The University of Pennsylvania; Department of Neurology (K.A.D., B.L., N.S.A.), Perelman School of Medicine at the University of Pennsylvania; and the Departments of Pediatrics (N.S.A.) and Anesthesia and Critical Care Medicine (A.A.T., N.S.A.), Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia.
Neurology. 2019 May 14;92(20):e2329-e2338. doi: 10.1212/WNL.0000000000007504. Epub 2019 Apr 10.
To determine whether quantitative EEG (QEEG) features predict neurologic outcomes in children after cardiac arrest.
We performed a single-center prospective observational study of 87 consecutive children resuscitated and admitted to the pediatric intensive care unit after cardiac arrest. Full-array conventional EEG data were obtained as part of clinical management. We computed 8 QEEG features from 5-minute epochs every hour after return of circulation. We developed predictive models utilizing random forest classifiers trained on patient age and 8 QEEG features to predict outcome. The features included SD of each EEG channel, normalized band power in alpha, beta, theta, delta, and gamma wave frequencies, line length, and regularity function scores. We measured outcomes using Pediatric Cerebral Performance Category (PCPC) scores. We evaluated the models using 5-fold cross-validation and 1,000 bootstrap samples.
The best performing model had a 5-fold cross-validation accuracy of 0.8 (0.88 area under the receiver operating characteristic curve). It had a positive predictive value of 0.79 and a sensitivity of 0.84 in predicting patients with favorable outcomes (PCPC score of 1-3). It had a negative predictive value of 0.8 and a specificity of 0.75 in predicting patients with unfavorable outcomes (PCPC score of 4-6). The model also identified the relative importance of each feature. Analyses using only frontal electrodes did not differ in prediction performance compared to analyses using all electrodes.
QEEG features can standardize EEG interpretation and predict neurologic outcomes in children after cardiac arrest.
确定定量脑电图(QEEG)特征是否可预测心脏骤停后儿童的神经预后。
我们对 87 例连续接受心脏骤停复苏并入住儿科重症监护病房的儿童进行了单中心前瞻性观察性研究。常规脑电图的全阵列数据是作为临床管理的一部分获得的。我们在循环恢复后每小时使用 5 分钟的时间段计算 8 个 QEEG 特征。我们使用随机森林分类器在患者年龄和 8 个 QEEG 特征的基础上开发了预测模型,以预测结果。特征包括每个 EEG 通道的标准差、alpha、beta、theta、delta 和 gamma 波频率的归一化带宽功率、线长度和规则函数评分。我们使用小儿脑功能预后评分(PCPC)评估结果。我们使用 5 倍交叉验证和 1000 个引导样本评估了模型。
表现最佳的模型在 5 倍交叉验证中的准确性为 0.8(接受者操作特征曲线下的面积为 0.88)。它预测预后良好的患者(PCPC 评分为 1-3)的阳性预测值为 0.79,敏感性为 0.84。预测预后不良的患者(PCPC 评分为 4-6)的阴性预测值为 0.8,特异性为 0.75。该模型还确定了每个特征的相对重要性。与使用所有电极的分析相比,仅使用额电极的分析在预测性能上没有差异。
QEEG 特征可标准化 EEG 解读,并预测心脏骤停后儿童的神经预后。