Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.
Nat Commun. 2024 Oct 26;15(1):9259. doi: 10.1038/s41467-024-53695-3.
Fungal infections pose a great threat to public health and there are only four main types of antifungal drugs, which are often limited with toxicity, drug-drug interactions and antibiotic resistance. Streptomyces is an important source of antibiotics, represented by the clinical drug amphotericin B. Here we report the discovery of alligamycin A (1) as an antifungal compound from the rapamycin-producer Streptomyces iranensis through genome-mining, genetics and natural product chemistry approaches. Alligamycin A harbors a unique chemical scaffold with 13 chiral centers, featuring a β-lactone moiety, a [6,6]-spiroketal ring, and an unreported 7-oxo-octylmalonyl-CoA extender unit incorporated by a potential crotonyl-CoA carboxylase/reductase. It is biosynthesized by a type I polyketide synthase which is confirmed through CRISPR-based gene editing. Alligamycin A displayed potent antifungal effects against numerous clinically relevant filamentous fungi, including resistant Aspergillus and Talaromyces species. β-Lactone ring is essential for the antifungal activity since alligamycin B (2) with disruption in the ring abolished the antifungal effect. Proteomics analysis revealed alligamycin A potentially disrupts the integrity of fungal cell walls and induces the expression of stress-response proteins in Aspergillus niger. Discovery of the potent antifungal candidate alligamycin A expands the limited antifungal chemical space.
真菌感染对公众健康构成了巨大威胁,目前仅有四种主要的抗真菌药物,而这些药物通常存在毒性、药物相互作用和抗生素耐药性等问题。链霉菌是抗生素的重要来源,其中临床药物两性霉素 B 就是一个代表。本研究通过基因组挖掘、遗传学和天然产物化学方法,从雷帕霉素产生菌链霉菌属伊朗亚种中发现了具有 13 个手性中心的新型抗真菌化合物——阿利霉素 A(1)。阿利霉素 A 具有独特的化学骨架,包含一个β-内酰胺部分、一个[6,6]-螺缩酮环和一个未报道的 7-氧代辛酰基-CoA 延伸单元,由潜在的丙二酰基-CoA 羧化酶/还原酶掺入。该化合物由 I 型聚酮合酶生物合成,这一结论通过基于 CRISPR 的基因编辑得到了证实。阿利霉素 A 对许多临床相关的丝状真菌表现出强大的抗真菌作用,包括耐药的曲霉属和拟青霉属真菌。β-内酰胺环对抗真菌活性至关重要,因为阿利霉素 B(2)中该环的破坏使其丧失了抗真菌活性。蛋白质组学分析表明,阿利霉素 A 可能破坏了真菌细胞壁的完整性,并诱导了黑曲霉中应激反应蛋白的表达。新型抗真菌候选化合物阿利霉素 A 的发现扩展了有限的抗真菌化学空间。