Suppr超能文献

生物电化学系统中特定混合培养物的长期行为。 (你原文中“and”前面应该还有其他内容,请补充完整以便准确翻译)

Long-Term Behavior of Defined Mixed Cultures of and in Bioelectrochemical Systems.

作者信息

Engel Christina, Schattenberg Florian, Dohnt Katrin, Schröder Uwe, Müller Susann, Krull Rainer

机构信息

Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.

Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.

出版信息

Front Bioeng Biotechnol. 2019 Mar 27;7:60. doi: 10.3389/fbioe.2019.00060. eCollection 2019.

Abstract

This work aims to investigate the long-term behavior of interactions of electrochemically active bacteria in bioelectrochemical systems. The electrochemical performance and biofilm characteristics of pure cultures of and are being compared to a defined mixed culture of both organisms. While pure cultures did not form cohesive and stable biofilms on graphite anodes and only yielded 0.034 ± 0.011 mA/cm as maximum current density by feeding of each 5 mM lactate and acetate, pure cultures formed 69 μm thick, area-wide biofilms with 10 mM acetate as initial substrate concentration and yielded a current of 0.39 ± 0.09 mA/cm. Compared to the latter, a defined mixed culture of both species was able to yield 38% higher maximum current densities of 0.54 ± 0.07 mA/cm with each 5 mM lactate and acetate. This increase in current density was associated with a likewise increased thickness of the anodic biofilm to approximately 93 μm. It was further investigated whether a sessile incorporation of into the mixed culture biofilm, which has been reported previously for short-term experiments, is long-term stable. The results demonstrate that was not stably incorporated into the biofilm; rather, the planktonic presence of has a positive effect on the biofilm growth of and thus on current production.

摘要

这项工作旨在研究生物电化学系统中电化学活性细菌相互作用的长期行为。将 和 的纯培养物的电化学性能及生物膜特性与这两种微生物的特定混合培养物进行比较。虽然 纯培养物在石墨阳极上未形成有凝聚力且稳定的生物膜,通过投喂5 mM乳酸盐和醋酸盐时,最大电流密度仅为0.034±0.011 mA/cm,但 纯培养物以10 mM醋酸盐作为初始底物浓度形成了69μm厚的全区域生物膜,电流为0.39±0.09 mA/cm。与后者相比,两种菌的特定混合培养物在投喂5 mM乳酸盐和醋酸盐时,能够产生更高38%的最大电流密度,即0.54±0.07 mA/cm。电流密度的这种增加与阳极生物膜厚度同样增加至约93μm有关。进一步研究了 以前在短期实验中报道的在混合培养生物膜中的固着掺入是否长期稳定。结果表明, 未稳定掺入生物膜;相反, 的浮游存在对 的生物膜生长进而对电流产生具有积极作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a315/6445848/c04787fca6c9/fbioe-07-00060-g0001.jpg

相似文献

1
Long-Term Behavior of Defined Mixed Cultures of and in Bioelectrochemical Systems.
Front Bioeng Biotechnol. 2019 Mar 27;7:60. doi: 10.3389/fbioe.2019.00060. eCollection 2019.
2
Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
Appl Environ Microbiol. 2017 Mar 2;83(6). doi: 10.1128/AEM.03033-16. Print 2017 Mar 15.
3
Engineering Cooperation in an Anaerobic Coculture.
Appl Environ Microbiol. 2021 May 11;87(11). doi: 10.1128/AEM.02852-20.
4
Elucidating the development of cooperative anode-biofilm-structures.
Biofilm. 2024 Mar 25;7:100193. doi: 10.1016/j.bioflm.2024.100193. eCollection 2024 Jun.
5
Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.
Environ Microbiol. 2008 Oct;10(10):2505-14. doi: 10.1111/j.1462-2920.2008.01675.x. Epub 2008 Jun 28.
6
Local Acidification Limits the Current Production and Biofilm Formation of MR-1 With Electrospun Anodes.
Front Microbiol. 2021 Jun 14;12:660474. doi: 10.3389/fmicb.2021.660474. eCollection 2021.
7
Characterization of microbial current production as a function of microbe-electrode-interaction.
Bioresour Technol. 2014 Apr;157:284-92. doi: 10.1016/j.biortech.2014.01.112. Epub 2014 Feb 4.
9
Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells.
ACS Appl Mater Interfaces. 2019 Mar 6;11(9):8961-8968. doi: 10.1021/acsami.8b14340. Epub 2019 Feb 20.

引用本文的文献

1
Recent advances in yeast and bacteria co-cultivation for bioprocess applications.
World J Microbiol Biotechnol. 2025 May 9;41(5):170. doi: 10.1007/s11274-025-04385-9.
2
Magnetic, conductive nanoparticles as building blocks for steerable micropillar-structured anodic biofilms.
Biofilm. 2024 Oct 3;8:100226. doi: 10.1016/j.bioflm.2024.100226. eCollection 2024 Dec.
3
Single-cell phenotyping of extracellular electron transfer via microdroplet encapsulation.
Appl Environ Microbiol. 2025 Jan 31;91(1):e0246524. doi: 10.1128/aem.02465-24. Epub 2025 Jan 14.
4
Single-Cell Phenotyping of Extracellular Electron Transfer via Microdroplet Encapsulation.
bioRxiv. 2024 Jun 13:2024.06.13.598847. doi: 10.1101/2024.06.13.598847.
5
Elucidating the development of cooperative anode-biofilm-structures.
Biofilm. 2024 Mar 25;7:100193. doi: 10.1016/j.bioflm.2024.100193. eCollection 2024 Jun.
8
LFQRatio: A Normalization Method to Decipher Quantitative Proteome Changes in Microbial Coculture Systems.
J Proteome Res. 2024 Mar 1;23(3):999-1013. doi: 10.1021/acs.jproteome.3c00714. Epub 2024 Feb 14.
9
Redox signaling-driven modulation of microbial biosynthesis and biocatalysis.
Nat Commun. 2023 Oct 26;14(1):6800. doi: 10.1038/s41467-023-42561-3.

本文引用的文献

2
Microbial nanowires and electroactive biofilms.
FEMS Microbiol Ecol. 2018 Jul 1;94(7). doi: 10.1093/femsec/fiy086.
3
Growth Trade-Offs Accompany the Emergence of Glycolytic Metabolism in Shewanella oneidensis MR-1.
J Bacteriol. 2017 May 9;199(11). doi: 10.1128/JB.00827-16. Print 2017 Jun 1.
4
Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
Appl Environ Microbiol. 2017 Mar 2;83(6). doi: 10.1128/AEM.03033-16. Print 2017 Mar 15.
7
Geobacter anodireducens sp. nov., an exoelectrogenic microbe in bioelectrochemical systems.
Int J Syst Evol Microbiol. 2014 Oct;64(Pt 10):3485-3491. doi: 10.1099/ijs.0.061598-0. Epub 2014 Jul 22.
8
Iron triggers λSo prophage induction and release of extracellular DNA in Shewanella oneidensis MR-1 biofilms.
Appl Environ Microbiol. 2014 Sep;80(17):5304-16. doi: 10.1128/AEM.01480-14. Epub 2014 Jun 20.
9
Cytometric fingerprints: evaluation of new tools for analyzing microbial community dynamics.
Front Microbiol. 2014 Jun 4;5:273. doi: 10.3389/fmicb.2014.00273. eCollection 2014.
10
Microbial nanowires for bioenergy applications.
Curr Opin Biotechnol. 2014 Jun;27:88-95. doi: 10.1016/j.copbio.2013.12.003. Epub 2013 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验