Suppr超能文献

模型多物种产电生物膜群落中的恢复力、动态变化及相互作用

Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.

作者信息

Prokhorova Anna, Sturm-Richter Katrin, Doetsch Andreas, Gescher Johannes

机构信息

Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany.

Institute of Functional Interfaces, Department of Interface Microbiology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.

出版信息

Appl Environ Microbiol. 2017 Mar 2;83(6). doi: 10.1128/AEM.03033-16. Print 2017 Mar 15.

Abstract

Anode-associated multispecies exoelectrogenic biofilms are essential for the function of bioelectrochemical systems (BESs). The individual activities of anode-associated organisms and physiological responses resulting from coculturing are often hard to assess due to the high microbial diversity in these systems. Therefore, we developed a model multispecies biofilm comprising three exoelectrogenic proteobacteria, , , and , with the aim to study in detail the biofilm formation dynamics, the interactions between the organisms, and the overall activity of an exoelectrogenic biofilm as a consequence of the applied anode potential. The experiments revealed that the organisms build a stable biofilm on an electrode surface that is rather resilient to changes in the redox potential of the anode. The community operated at maximum electron transfer rates at electrode potentials that were higher than 0.04 V versus a normal hydrogen electrode. Current densities decreased gradually with lower potentials and reached half-maximal values at -0.08 V. Transcriptomic results point toward a positive interaction among the individual strains. and upregulated their central metabolisms as a response to cultivation under mixed-species conditions. was detected in the planktonic phase of the bioelectrochemical reactors in mixed-culture experiments but not when it was grown in the absence of the other two organisms. In many cases, multispecies communities can convert organic substrates into electric power more efficiently than axenic cultures, a phenomenon that remains unresolved. In this study, we aimed to elucidate the potential mutual effects of multispecies communities in bioelectrochemical systems to understand how microbes interact in the coculture anodic network and to improve the community's conversion efficiency for organic substrates into electrical energy. The results reveal positive interactions that might lead to accelerated electron transfer in mixed-species anode communities. The observations made within this model biofilm might be applicable to a variety of nonaxenic systems in the field.

摘要

阳极相关的多物种产电生物膜对于生物电化学系统(BESs)的功能至关重要。由于这些系统中微生物多样性高,阳极相关生物体的个体活性以及共培养产生的生理反应往往难以评估。因此,我们构建了一个由三种产电变形菌( 、 和 )组成的多物种生物膜模型,旨在详细研究生物膜形成动态、生物体之间的相互作用以及施加阳极电位后产电生物膜的整体活性。实验表明,这些生物体在电极表面形成了稳定的生物膜,该生物膜对阳极氧化还原电位的变化具有较强的抗性。该群落相对于标准氢电极在高于0.04 V的电极电位下以最大电子转移速率运行。随着电位降低,电流密度逐渐下降,在-0.08 V时达到最大值的一半。转录组学结果表明各菌株之间存在正向相互作用。 和 上调其中心代谢以响应混合物种条件下的培养。在混合培养实验中, 在生物电化学反应器的浮游阶段被检测到,但在没有其他两种生物体的情况下生长时未被检测到。在许多情况下,多物种群落比纯培养物能更有效地将有机底物转化为电能,这一现象仍未得到解释。在本研究中,我们旨在阐明生物电化学系统中多物种群落的潜在相互作用,以了解微生物在共培养阳极网络中的相互作用方式,并提高群落将有机底物转化为电能的效率。结果揭示了可能导致混合物种阳极群落中电子转移加速的正向相互作用。在这个模型生物膜中所做的观察结果可能适用于该领域的各种非无菌系统。

相似文献

1
Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
Appl Environ Microbiol. 2017 Mar 2;83(6). doi: 10.1128/AEM.03033-16. Print 2017 Mar 15.
2
Microbial community composition is unaffected by anode potential.
Environ Sci Technol. 2014 Jan 21;48(2):1352-8. doi: 10.1021/es404690q. Epub 2014 Jan 2.
3
Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
Appl Environ Microbiol. 2017 Aug 17;83(17). doi: 10.1128/AEM.00903-17. Print 2017 Sep 1.
4
Genomic Barcode-Based Analysis of Exoelectrogens in Wastewater Biofilms Grown on Anode Surfaces.
J Microbiol Biotechnol. 2016 Mar;26(3):511-20. doi: 10.4014/jmb.1510.10102.
8
The performance of microbial anodes in municipal wastewater: Pre-grown multispecies biofilm vs. natural inocula.
Bioresour Technol. 2016 Dec;221:165-171. doi: 10.1016/j.biortech.2016.09.004. Epub 2016 Sep 4.
9
Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells.
ACS Appl Mater Interfaces. 2019 Mar 6;11(9):8961-8968. doi: 10.1021/acsami.8b14340. Epub 2019 Feb 20.
10
Characterization of microbial current production as a function of microbe-electrode-interaction.
Bioresour Technol. 2014 Apr;157:284-92. doi: 10.1016/j.biortech.2014.01.112. Epub 2014 Feb 4.

引用本文的文献

1
Magnetic, conductive nanoparticles as building blocks for steerable micropillar-structured anodic biofilms.
Biofilm. 2024 Oct 3;8:100226. doi: 10.1016/j.bioflm.2024.100226. eCollection 2024 Dec.
3
Electron transfer of extremophiles in bioelectrochemical systems.
Extremophiles. 2022 Oct 12;26(3):31. doi: 10.1007/s00792-022-01279-8.
4
Flavin-mediated extracellular electron transfer in Gram-positive bacteria DIF1 and DIF2.
RSC Adv. 2019 Dec 11;9(70):40903-40909. doi: 10.1039/c9ra08045g. eCollection 2019 Dec 9.
5
6
Electrochemical Microwell Plate to Study Electroactive Microorganisms in Parallel and Real-Time.
Front Bioeng Biotechnol. 2022 Feb 15;9:821734. doi: 10.3389/fbioe.2021.821734. eCollection 2021.
7
Engineering Cooperation in an Anaerobic Coculture.
Appl Environ Microbiol. 2021 May 11;87(11). doi: 10.1128/AEM.02852-20.
8
Long-Term Behavior of Defined Mixed Cultures of and in Bioelectrochemical Systems.
Front Bioeng Biotechnol. 2019 Mar 27;7:60. doi: 10.3389/fbioe.2019.00060. eCollection 2019.
10
Development of a production chain from vegetable biowaste to platform chemicals.
Microb Cell Fact. 2018 Jun 13;17(1):90. doi: 10.1186/s12934-018-0937-4.

本文引用的文献

2
Expanding the Diet for DIET: Electron Donors Supporting Direct Interspecies Electron Transfer (DIET) in Defined Co-Cultures.
Front Microbiol. 2016 Mar 1;7:236. doi: 10.3389/fmicb.2016.00236. eCollection 2016.
3
Bioelectrochemical systems-driven directional ion transport enables low-energy water desalination, pollutant removal, and resource recovery.
Bioresour Technol. 2016 Sep;215:274-284. doi: 10.1016/j.biortech.2016.02.107. Epub 2016 Mar 3.
4
Genomic Barcode-Based Analysis of Exoelectrogens in Wastewater Biofilms Grown on Anode Surfaces.
J Microbiol Biotechnol. 2016 Mar;26(3):511-20. doi: 10.4014/jmb.1510.10102.
5
Link between capacity for current production and syntrophic growth in Geobacter species.
Front Microbiol. 2015 Jul 21;6:744. doi: 10.3389/fmicb.2015.00744. eCollection 2015.
6
Bioelectrochemical system platform for sustainable environmental remediation and energy generation.
Biotechnol Adv. 2015 May-Aug;33(3-4):317-34. doi: 10.1016/j.biotechadv.2015.04.003. Epub 2015 Apr 14.
8
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
9
Electroactive bacteria--molecular mechanisms and genetic tools.
Appl Microbiol Biotechnol. 2014 Oct;98(20):8481-95. doi: 10.1007/s00253-014-6005-z. Epub 2014 Aug 20.
10
Characterization of microbial current production as a function of microbe-electrode-interaction.
Bioresour Technol. 2014 Apr;157:284-92. doi: 10.1016/j.biortech.2014.01.112. Epub 2014 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验