Suppr超能文献

磁性导电纳米粒子作为可控微柱结构阳极生物膜的构建单元。

Magnetic, conductive nanoparticles as building blocks for steerable micropillar-structured anodic biofilms.

作者信息

Wurst René, Klein Edina, Gescher Johannes

机构信息

Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany.

出版信息

Biofilm. 2024 Oct 3;8:100226. doi: 10.1016/j.bioflm.2024.100226. eCollection 2024 Dec.

Abstract

In bioelectrochemical systems (BES), biofilm formation and architecture are of crucial importance, especially for flow-through applications. The interface between electroactive microorganisms and the electrode surface plays an important and often limiting role, as the available surface area influences current generation, especially for poor biofilm forming organisms. To overcome the limitation of the available electrode surface, nanoparticles (NPs) with a magnetic iron core and a conductive, hydrophobic carbon shell were used as building blocks to form conductive, magnetic micropillars on the anode surface. The formation of this dynamic three-dimensional electrode architecture was monitored and quantified using optical coherence tomography (OCT) in conjunction with microfluidic BES systems. By cyclic voltammetry the assembled three-dimensional anode extensions were found to be electrically conductive and increased the available electroactive surface area. The NPs were used as controllable carriers for the electroactive model organisms and , resulting in a 5-fold increase in steady-state current density for , which could be increased 22-fold when combined with Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) aggregates. In the case of , the steady-state current density was not increased, but was achieved four times faster. The study presents a controllable, scalable and easy-to-use method to increase the electrode surface area in existing BES by applying a magnetic field and adding conductive magnetic NPs. These findings can most likely also be transferred to other electroactive microorganisms.

摘要

在生物电化学系统(BES)中,生物膜的形成和结构至关重要,特别是对于流通式应用而言。电活性微生物与电极表面之间的界面起着重要且往往具有限制作用,因为可用表面积会影响电流产生,尤其是对于生物膜形成能力较差的生物体。为了克服可用电极表面的限制,将具有磁性铁芯和导电、疏水碳壳的纳米颗粒(NPs)用作构建块,在阳极表面形成导电、磁性微柱。使用光学相干断层扫描(OCT)结合微流体BES系统对这种动态三维电极结构的形成进行了监测和量化。通过循环伏安法发现,组装的三维阳极延伸部分具有导电性,并增加了可用的电活性表面积。这些NPs被用作电活性模型生物的可控载体,对于[具体生物1]而言,稳态电流密度增加了5倍,当与聚(3,4 - 乙撑二氧噻吩)- 聚(苯乙烯磺酸盐)(PEDOT:PSS)聚集体结合时,稳态电流密度可增加22倍。对于[具体生物2],稳态电流密度没有增加,但达到该电流密度的速度快了四倍。该研究提出了一种可控、可扩展且易于使用的方法,通过施加磁场和添加导电磁性NPs来增加现有BES中的电极表面积。这些发现很可能也适用于其他电活性微生物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1767/11740803/fa8ed5382144/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验