Suppr超能文献

透明细胞肾细胞癌的平扫CT纹理分析:一项基于机器学习预测组织病理学核分级的研究

Unenhanced CT Texture Analysis of Clear Cell Renal Cell Carcinomas: A Machine Learning-Based Study for Predicting Histopathologic Nuclear Grade.

作者信息

Kocak Burak, Durmaz Emine Sebnem, Ates Ece, Kaya Ozlem Korkmaz, Kilickesmez Ozgur

机构信息

Department of Radiology, Istanbul Training and Research Hospital, Samatya, Istanbul 34098, Turkey.

Department of Radiology, Buyukcekmece Mimar Sinan State Hospital, Istanbul, Turkey.

出版信息

AJR Am J Roentgenol. 2019 Jun;212(6):W132-W139. doi: 10.2214/AJR.18.20742. Epub 2019 Apr 11.

Abstract

The purpose of this study is to investigate the predictive performance of machine learning (ML)-based unenhanced CT texture analysis in distinguishing low (grades I and II) and high (grades III and IV) nuclear grade clear cell renal cell carcinomas (RCCs). For this retrospective study, 81 patients with clear cell RCC (56 high and 25 low nuclear grade) were included from a public database. Using 2D manual segmentation, 744 texture features were extracted from unenhanced CT images. Dimension reduction was done in three consecutive steps: reproducibility analysis by two radiologists, collinearity analysis, and feature selection. Models were created using artificial neural network (ANN) and binary logistic regression, with and without synthetic minority oversampling technique (SMOTE), and were validated using 10-fold cross-validation. The reference standard was histopathologic nuclear grade (low vs high). Dimension reduction steps yielded five texture features for the ANN and six for the logistic regression algorithm. None of clinical variables was selected. ANN alone and ANN with SMOTE correctly classified 81.5% and 70.5%, respectively, of clear cell RCCs, with AUC values of 0.714 and 0.702, respectively. The logistic regression algorithm alone and with SMOTE correctly classified 75.3% and 62.5%, respectively, of the tumors, with AUC values of 0.656 and 0.666, respectively. The ANN performed better than the logistic regression ( < 0.05). No statistically significant difference was present between the model performances created with and without SMOTE ( > 0.05). ML-based unenhanced CT texture analysis using ANN can be a promising noninvasive method in predicting the nuclear grade of clear cell RCCs.

摘要

本研究的目的是探讨基于机器学习(ML)的平扫CT纹理分析在鉴别低核级(I级和II级)和高核级(III级和IV级)透明细胞肾细胞癌(RCC)中的预测性能。在这项回顾性研究中,从一个公共数据库纳入了81例透明细胞RCC患者(56例高核级和25例低核级)。使用二维手动分割,从平扫CT图像中提取了744个纹理特征。降维分三个连续步骤进行:由两名放射科医生进行可重复性分析、共线性分析和特征选择。使用人工神经网络(ANN)和二元逻辑回归创建模型,有无合成少数过采样技术(SMOTE),并使用10折交叉验证进行验证。参考标准是组织病理学核级(低核级与高核级)。降维步骤为ANN产生了5个纹理特征,为逻辑回归算法产生了6个纹理特征。未选择任何临床变量。单独的ANN和带有SMOTE的ANN分别正确分类了81.5%和70.5%的透明细胞RCC,AUC值分别为0.714和0.702。单独的逻辑回归算法和带有SMOTE的逻辑回归算法分别正确分类了75.3%和62.5%的肿瘤,AUC值分别为0.656和0.666。ANN的表现优于逻辑回归(<0.05)。使用和不使用SMOTE创建的模型性能之间没有统计学显著差异(>0.05)。使用ANN的基于ML的平扫CT纹理分析可能是预测透明细胞RCC核级的一种有前景的非侵入性方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验