University of Campinas, UNICAMP, Institute of Chemistry, 13083-970, Campinas, SP, Brazil.
University of Campinas, UNICAMP, School of Chemical Engineering, PO BOX 6066, 13086-090, Campinas, SP, Brazil.
Colloids Surf B Biointerfaces. 2019 Jul 1;179:233-241. doi: 10.1016/j.colsurfb.2019.03.056. Epub 2019 Mar 27.
In this work, we describe a hydrodynamic flow-focusing microfluidic process to produce stealth cationic liposomes (SCL), stabilized with poly(ethylene glycol) (PEG), with uniform and reproducible features. Through cryogenic transmission electron microscopy (cryo-TEM) characterization and real-time monitoring, we verified the formation of multi-sized lipid self-aggregates, which can be attributed to micelles formation. These structures tend to undergo deposition within the PDMS/glass microchannels through intermolecular interactions with the glass walls, hindering not only the process reproducibility but also the final biological application of the SCL products. In view of this, we propose the modulation of ionic strength of the side streams aiming to ionically shield the glass surface, decrease the intermolecular interactions of the lipid polar heads, and, essentially, to promote the bilayer-driven self-assembly of SCL with 1% of DSPE-PEG lipid. Herein, we applied phosphate-buffered saline (PBS) from 10 to 50 mM concentration as side streams, and evaluated its effects on SCL final physicochemical properties in terms of size distribution, mean diameter, zeta potential and polydispersity index (PDI). We present evidences indicating that the ionic strength can be used as a microfluidic process parameter to modulate the lipids self-assembly kinetics whilst preventing micelles formation. Finally, the proposed diffusion-based microfluidic system with high ionic strength enables the formation of monodisperse (PDI < 0.2) SCL of around 140 nm with monomodal size distributions and enhanced properties when compared to usual bulk mixing.
在这项工作中,我们描述了一种流体动力学的流聚焦微流控工艺,用于生产具有聚乙二醇(PEG)稳定的隐形阳离子脂质体(SCL),其具有均匀和可重复的特性。通过低温透射电子显微镜(cryo-TEM)表征和实时监测,我们验证了多尺寸脂质自聚集体的形成,这可以归因于胶束的形成。这些结构通过与玻璃壁的分子间相互作用,倾向于在 PDMS/玻璃微通道内沉积,不仅阻碍了过程的重现性,也阻碍了 SCL 产品的最终生物应用。鉴于此,我们提出调节侧流的离子强度,以对玻璃表面进行离子屏蔽,降低脂质极性头的分子间相互作用,从本质上促进具有 1%DSPE-PEG 脂质的 SCL 的双层驱动自组装。在此,我们应用了从 10 到 50mM 浓度的磷酸盐缓冲盐水(PBS)作为侧流,并根据粒径分布、平均直径、Zeta 电位和多分散指数(PDI)评估其对 SCL 最终物理化学性质的影响。我们提供的证据表明,离子强度可用作微流控工艺参数,以调节脂质自组装动力学,同时防止胶束的形成。最后,所提出的基于扩散的高离子强度微流控系统能够形成单分散(PDI<0.2)的约 140nm 的 SCL,具有单模态的粒径分布,并与常规的批量混合相比具有增强的性质。