Shishlyannikov Sergey M, Zubkov Ilya N, Vysochinskaya Vera V, Gavrilova Nina V, Dobrovolskaya Olga A, Elpaeva Ekaterina A, Maslov Mikhail A, Vasin Andrey
Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Politechnicheskaya St., 195251 Saint Petersburg, Russia.
Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia.
Pharmaceutics. 2024 Oct 7;16(10):1305. doi: 10.3390/pharmaceutics16101305.
The development of polymer-lipid hybrid nanoparticles (PLNs) is a promising area of research, as it can help increase the stability of cationic lipid carriers. Hybrid PLNs are core-shell nanoparticle structures that combine the advantages of both polymer nanoparticles and liposomes, especially in terms of their physical stability and biocompatibility. Natural polymers such as polyhydroxyalkanoate (PHA) can be used as a matrix for the PLNs' preparation. : In this study, we first obtained stable cationic hybrid PLNs using a cationic liposome (CL) composed of a polycationic lipid 2X3 (1,26-bis(cholest-5--3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride), helper lipid DOPE (1,2-dioleoyl--glycero-3-phosphoethanolamine), and the hydrophobic polymer -PHA, which was produced by the soil bacterium P1. : The new polymer-lipid carriers effectively encapsulated and delivered model mRNA-eGFP (enhanced green fluorescent protein mRNA) to BHK-21 cells. We then evaluated the role of -PHA in increasing the stability of cationic PLNs in ionic solutions using dynamic light scattering data, electrophoretic mobility, and transmission electron microscopy techniques. : The results showed that increasing the concentration of PBS (phosphate buffered saline) led to a decrease in the stability of the CLs. At high concentrations of PBS, the CLs aggregate. In contrast, the presence of isotonic PBS did not result in the aggregation of PLNs, and the particles remained stable for 120 h when stored at +4 °C. The obtained results show that PLNs hold promise for further in vivo studies on nucleic acid delivery.
聚合物-脂质杂化纳米颗粒(PLNs)的研发是一个很有前景的研究领域,因为它有助于提高阳离子脂质载体的稳定性。杂化PLNs是核壳纳米颗粒结构,结合了聚合物纳米颗粒和脂质体的优点,特别是在物理稳定性和生物相容性方面。天然聚合物如聚羟基脂肪酸酯(PHA)可作为制备PLNs的基质。在本研究中,我们首先使用由聚阳离子脂质2X3(1,26-双(胆甾-5--3β-基氧基羰基氨基)-7,11,16,20-四氮杂二十六烷四盐酸盐)、辅助脂质DOPE(1,2-二油酰基-sn-甘油-3-磷酸乙醇胺)和由土壤细菌P1产生的疏水性聚合物-PHA组成的阳离子脂质体(CL)获得了稳定的阳离子杂化PLNs。新型聚合物-脂质载体有效地将模型mRNA-eGFP(增强型绿色荧光蛋白mRNA)封装并递送至BHK-21细胞。然后,我们使用动态光散射数据、电泳迁移率和透射电子显微镜技术评估了-PHA在提高阳离子PLNs在离子溶液中的稳定性方面的作用。结果表明,增加磷酸盐缓冲盐水(PBS)的浓度会导致CLs稳定性下降。在高浓度PBS下,CLs会聚集。相比之下,等渗PBS的存在不会导致PLNs聚集,并且当在+4°C下储存时,颗粒在120小时内保持稳定。所得结果表明,PLNs在核酸递送的进一步体内研究方面具有前景。