Suppr超能文献

在公共空间中通过深度学习方法检测儿童玩视频游戏时的神经活动。

Assaying neural activity of children during video game play in public spaces: a deep learning approach.

出版信息

J Neural Eng. 2019 Jun;16(3):036028. doi: 10.1088/1741-2552/ab1876. Epub 2019 Apr 11.

Abstract

OBJECTIVE

Understanding neural activity patterns in the developing brain remains one of the grand challenges in neuroscience. Developing neural networks are likely to be endowed with functionally important variability associated with the environmental context, age, gender, and other variables. Therefore, we conducted experiments with typically developing children in a stimulating museum setting and tested the feasibility of using deep learning techniques to help identify patterns of brain activity associated with different conditions.

APPROACH

A four-channel dry EEG-based Mobile brain-body imaging data of children at rest and during videogame play (VGP) was acquired at the Children's Museum of Houston. A data-driven approach based on convolutional neural networks (CNN) was used to describe underlying feature representations in the EEG and their ability to discern task and gender. The variability of the spectral features of EEG during the rest condition as a function of age was also analyzed.

MAIN RESULTS

Alpha power (7-13 Hz) was higher during rest whereas theta power (4-7 Hz) was higher during VGP. Beta (13-18 Hz) power was the most significant feature, higher in females, when differentiating between males and females. Using data from both temporoparietal channels to classify between VGP and rest condition, leave-one-subject-out cross-validation accuracy of 67% was obtained. Age-related changes in EEG spectral content during rest were consistent with previous developmental studies conducted in laboratory settings showing an inverse relationship between age and EEG power.

SIGNIFICANCE

These findings are the first to acquire, quantify and explain brain patterns observed during VGP and rest in freely behaving children in a museum setting using a deep learning framework. The study shows how deep learning can be used as a data driven approach to identify patterns in the data and explores the issues and the potential of conducting experiments involving children in a natural and engaging environment.

摘要

目的

理解发育中大脑的神经活动模式仍然是神经科学的重大挑战之一。发育中的神经网络可能具有与环境背景、年龄、性别和其他变量相关的重要功能变异性。因此,我们在一个充满活力的博物馆环境中对正常发育的儿童进行了实验,并测试了使用深度学习技术来帮助识别与不同条件相关的大脑活动模式的可行性。

方法

在休斯顿儿童博物馆采集了儿童静息和玩视频游戏(VGP)时的基于四个通道干电极的移动脑-体成像数据。使用基于卷积神经网络(CNN)的数据驱动方法来描述 EEG 中的潜在特征表示及其区分任务和性别的能力。还分析了静息状态下 EEG 频谱特征随年龄变化的可变性。

主要结果

在静息状态下,阿尔法功率(7-13 Hz)较高,而在 VGP 期间,theta 功率(4-7 Hz)较高。在区分男性和女性时,beta(13-18 Hz)功率是最显著的特征,女性更高。使用来自颞顶通道的数据对 VGP 和静息状态进行分类,通过一次排除一个受试者的交叉验证,获得了 67%的准确率。静息状态下 EEG 频谱内容随年龄的变化与在实验室环境中进行的先前发育研究一致,表明年龄与 EEG 功率呈反比关系。

意义

这些发现是首次使用深度学习框架在博物馆环境中自由行为的儿童中获取、量化和解释 VGP 和静息状态下观察到的大脑模式。该研究展示了如何使用深度学习作为一种数据驱动方法来识别数据中的模式,并探讨了在自然和引人入胜的环境中进行涉及儿童的实验的问题和潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验