文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Surface Immobilization of pH-Responsive Polymer Brushes on Mesoporous Silica Nanoparticles by Enzyme Mimetic Catalytic ATRP for Controlled Cargo Release.

作者信息

Zhou Hang, Wang Xin, Tang Jun, Yang Ying-Wei

机构信息

College of Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), Jilin University, Changchun 130012, China.

出版信息

Polymers (Basel). 2016 Aug 2;8(8):277. doi: 10.3390/polym8080277.


DOI:10.3390/polym8080277
PMID:30974554
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6432388/
Abstract

Peroxidase mimetic catalytic atom transfer radical polymerization (ATRP) was first used to install tertiary amine-functionalized polymer brushes on the surface of mesoporous silica nanoparticles (MSNs) in a facile and highly efficient manner. Poly(,-dimethylaminoethyl methacrylate) (PDMAEMA) brushes-grafted MSNs were fabricated by biocompatible deuterohemin-β-Ala-His-Thr-Val-Glu-Lys (DhHP-6)-catalyzed surface-initiated ATRP (SI-ATRP). The resulting organic⁻inorganic hybrid nanocarriers were fully characterized by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), SEM, TEM, Elemental analysis, Zeta-potential, and N₂ adsorption⁻desorption isotherms, which demonstrated the successful coating of pH-responsive polymers on the MSN surface. Rhodamine 6G (Rh6G) dyes were further loaded within the mesopores of this nanocarrier, and the release of Rh6G out of MSNs in a controlled fashion was achieved upon lowing the solution pH. The electrostatic repulsion of positively-charged tertiary ammonium of PDMAEMAs in acidic environments induced the stretching out of polymer brushes on MSN surfaces, thus opening the gates to allow cargo diffusion out of the mesopores of MSNs.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/0e4928cf90e6/polymers-08-00277-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/ab502d4e27c5/polymers-08-00277-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/f3efb8eadae7/polymers-08-00277-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/485b53670ed0/polymers-08-00277-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/3e0e1f1e9b14/polymers-08-00277-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/ca09c6a46a64/polymers-08-00277-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/a93006a10e11/polymers-08-00277-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/0e4928cf90e6/polymers-08-00277-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/ab502d4e27c5/polymers-08-00277-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/f3efb8eadae7/polymers-08-00277-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/485b53670ed0/polymers-08-00277-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/3e0e1f1e9b14/polymers-08-00277-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/ca09c6a46a64/polymers-08-00277-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/a93006a10e11/polymers-08-00277-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ae/6432388/0e4928cf90e6/polymers-08-00277-g006.jpg

相似文献

[1]
Surface Immobilization of pH-Responsive Polymer Brushes on Mesoporous Silica Nanoparticles by Enzyme Mimetic Catalytic ATRP for Controlled Cargo Release.

Polymers (Basel). 2016-8-2

[2]
Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.

J Vis Exp. 2019-4-30

[3]
Hybrid Mesoporous Silica Nanoparticles Grafted with 2-(tert-butylamino)ethyl Methacrylate-b-poly(ethylene Glycol) Methyl Ether Methacrylate Diblock Brushes as Drug Nanocarrier.

Molecules. 2020-1-3

[4]
Glucosamine Modified the Surface of pH-Responsive Poly(2-(diethylamino)ethyl Methacrylate) Brushes Grafted on Hollow Mesoporous Silica Nanoparticles as Smart Nanocarrier.

Polymers (Basel). 2020-11-20

[5]
Poly(oligo(ethylene glycol) methyl ether methacrylate) Capped pH-Responsive Poly(2-(diethylamino)ethyl methacrylate) Brushes Grafted on Mesoporous Silica Nanoparticles as Nanocarrier.

Polymers (Basel). 2021-3-8

[6]
Surface modification of pH-responsive poly(2-(tert-butylamino)ethyl methacrylate) brushes grafted on mesoporous silica nanoparticles.

Des Monomers Polym. 2019-12-11

[7]
Facile Synthesis of Three Types of Mesoporous Silica Microspheres as Drug Delivery Carriers and their Sustained-Release Properties.

Curr Drug Deliv. 2023

[8]
Folic Acid-Terminated Poly(2-Diethyl Amino Ethyl Methacrylate) Brush-Gated Magnetic Mesoporous Nanoparticles as a Smart Drug Delivery System.

Polymers (Basel). 2020-12-25

[9]
Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.

Colloids Surf B Biointerfaces. 2016-9-1

[10]
Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity.

Biomacromolecules. 2011-9-20

引用本文的文献

[1]
Stimuli-Responsive Rifampicin-Based Macromolecules.

Materials (Basel). 2020-8-31

[2]
Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications.

Polymers (Basel). 2018-5-14

[3]
Hybrid Mesoporous Nanoparticles for pH-Actuated Controlled Release.

Nanomaterials (Basel). 2019-3-26

[4]
Anchoring Gated Mesoporous Silica Particles to Ethylene Vinyl Alcohol Films for Smart Packaging Applications.

Nanomaterials (Basel). 2018-10-22

[5]
pH and Thermal Dual-Responsive Nanoparticles for Controlled Drug Delivery with High Loading Content.

ACS Omega. 2017-7-31

本文引用的文献

[1]
Temperature- and redox-responsive magnetic complex micelles for controlled drug release.

J Mater Chem B. 2015-1-14

[2]
Gated Materials for On-Command Release of Guest Molecules.

Chem Rev. 2016-1-5

[3]
pH and Glutathione Dual-Responsive Dynamic Cross-Linked Supramolecular Network on Mesoporous Silica Nanoparticles for Controlled Anticancer Drug Release.

ACS Appl Mater Interfaces. 2015-12-15

[4]
Polymer-Coated Hollow Mesoporous Silica Nanoparticles for Triple-Responsive Drug Delivery.

ACS Appl Mater Interfaces. 2015-8-19

[5]
Molecular and supramolecular switches on mesoporous silica nanoparticles.

Chem Soc Rev. 2015-6-7

[6]
Mesoporous materials as multifunctional tools in biosciences: principles and applications.

Mater Sci Eng C Mater Biol Appl. 2014-12-24

[7]
Sugar and pH dual-responsive snap-top nanocarriers based on mesoporous silica-coated Fe3O4 magnetic nanoparticles for cargo delivery.

Chem Commun (Camb). 2015-3-11

[8]
Mesoporous Silica Nanoparticles Coated by Layer-by-Layer Self-assembly Using Cucurbit[7]uril for in Vitro and in Vivo Anticancer Drug Release.

Chem Mater. 2014-11-25

[9]
Filling polymersomes with polymers by peroxidase-catalyzed atom transfer radical polymerization.

Macromol Rapid Commun. 2015-3

[10]
Perspectives on electrostatics and conformational motions in enzyme catalysis.

Acc Chem Res. 2015-2-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索