Suppr超能文献

精神障碍导致病假时长的预测因素。

Predictive factors of the duration of sick leave due to mental disorders.

作者信息

Sakakibara Sawako, Sado Mitsuhiro, Ninomiya Akira, Arai Mayuko, Takahashi Satoko, Ishihara Chika, Miura Yuki, Tabuchi Hajime, Shirahase Joichiro, Mimura Masaru

机构信息

1Center for Counseling and Disability Services, Tohoku University, Sendai, Japan.

2Department of Neuropsychiatry, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, 160-8582 Japan.

出版信息

Int J Ment Health Syst. 2019 Mar 30;13:19. doi: 10.1186/s13033-019-0279-6. eCollection 2019.

Abstract

BACKGROUND

This study aimed to examine potential predictors of duration of sick leave due to mental disorders in Japan.

METHODS

A total of 207 employees at a manufacturing company in Japan with a past history of sick leave due to mental disorders participated in this study. Mental disorders were defined as those listed in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). All of the participants used the mental health program that the company provided. The predictive power of the variables was tested using a Cox proportional hazard analysis. The hazard ratios in the final model were used to identify the predictor variables of the duration of sick leave. We included socio-demographic (age, sex, tenure), clinical (diagnosis and number of previous sick leave), and work-related factors (employment rank) as possible predictors. Data on these variables were obtained through the psychiatrists and psychologists in the company's mental health program.

RESULTS

The results of the univariate analyses showed that the number of previous sick leave episodes, diagnosis and employee rank were significant predictors of the duration of sick leave due to mental disorders. A multivariate analysis indicated that age, number of previous sick leave and employee rank were statistically significant predictors of return to work.

CONCLUSIONS

Diagnosis, number of previous sick leave episodes, and employee rank are predictors of the duration of sick leave due to mental disorders. This study's findings have implications in the development of effective interventions to prevent protracted sick leave.

摘要

背景

本研究旨在调查日本因精神障碍导致病假时长的潜在预测因素。

方法

日本一家制造公司共有207名曾因精神障碍请过病假的员工参与了本研究。精神障碍定义为《精神疾病诊断与统计手册》第四版(DSM-IV)中列出的疾病。所有参与者都使用了公司提供的心理健康项目。使用Cox比例风险分析来测试变量的预测能力。最终模型中的风险比率用于确定病假时长的预测变量。我们纳入了社会人口统计学因素(年龄、性别、任期)、临床因素(诊断结果和之前病假次数)以及与工作相关的因素(职位级别)作为可能的预测因素。这些变量的数据通过公司心理健康项目中的精神科医生和心理学家获取。

结果

单因素分析结果显示,之前病假次数、诊断结果和员工职位级别是因精神障碍导致病假时长的显著预测因素。多因素分析表明,年龄、之前病假次数和员工职位级别是恢复工作的统计学显著预测因素。

结论

诊断结果、之前病假次数和员工职位级别是因精神障碍导致病假时长的预测因素。本研究结果对制定有效的干预措施以防止长期病假具有启示意义。

相似文献

1
Predictive factors of the duration of sick leave due to mental disorders.精神障碍导致病假时长的预测因素。
Int J Ment Health Syst. 2019 Mar 30;13:19. doi: 10.1186/s13033-019-0279-6. eCollection 2019.

引用本文的文献

3
COVID-19 and Mortality, Depression, and Suicide in the Polish Population.COVID-19 与波兰人群中的死亡率、抑郁和自杀。
Front Public Health. 2022 Mar 16;10:854028. doi: 10.3389/fpubh.2022.854028. eCollection 2022.

本文引用的文献

2
The cost of schizophrenia in Japan.日本精神分裂症的成本。
Neuropsychiatr Dis Treat. 2013;9:787-98. doi: 10.2147/NDT.S41632. Epub 2013 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验