National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, South-Central University for Nationalities, Wuhan, Hubei Province, 430074, China.
New Phytol. 2019 Sep;223(4):2104-2119. doi: 10.1111/nph.15845. Epub 2019 Jul 25.
A coexpression network is a powerful tool for revealing genes' relationship with many biological processes. Mass transcriptomic and genomic data from different plant species provide the foundation for understanding the evolution of nodulation across the Viridiplantae at a systematic level. We used weighted coexpression network analysis (WGCNA) to mine a nodule-related module (NRM) in Glycine max. Comparative genomic analysis of 78 green plant species revealed that NRM genes are recruited from different evolutionary nodes along with gene duplication events. A set of core coexpressed genes within legumes may play vital roles in regulating nodule environments essential for nitrogen fixation, including oxygen concentrations, sulfur transport, and iron homeostasis (such as GmCHY). The regulation of these genes occurred mainly at the transcription level, although some of them, such as sulfate transporters, may also undergo positive selection at protein level. We revealed that ancient orthologs and duplication events before the origin of legumes were preadapted for symbiosis. Conserved coregulated genes found within legumes paved the way for nodule formation and nitrogen fixation. These findings provide significant insights into the evolution of nodulation and indicate promising candidates for identifying other key components of legume nodulation and nitrogen fixation.
共表达网络是揭示基因与许多生物学过程关系的有力工具。来自不同植物物种的大量转录组和基因组数据为在系统水平上理解Viridiplantae 中结瘤的进化提供了基础。我们使用加权共表达网络分析(WGCNA)挖掘了 Glycine max 中的一个与结瘤相关的模块(NRM)。对 78 种绿色植物物种的比较基因组分析表明,NRM 基因是通过基因复制事件从不同的进化节点招募而来的。一组豆科植物中的核心共表达基因可能在调节氮固定所必需的结瘤环境中发挥重要作用,包括氧浓度、硫运输和铁稳态(如 GmCHY)。这些基因的调控主要发生在转录水平,尽管其中一些基因,如硫酸盐转运蛋白,可能也在蛋白质水平上经历了正选择。我们揭示了豆科植物起源之前的古老直系同源物和复制事件是共生的预适应。在豆科植物中发现的保守核心调控基因为结瘤和固氮铺平了道路。这些发现为结瘤的进化提供了重要的见解,并为鉴定豆科植物结瘤和固氮的其他关键成分提供了有希望的候选基因。