Hormaty Somayyeh, Seiwan Anwar Nather, Rasheed Bushra H, Parvaz Hanieh, Gharahzadeh Ali, Ghaznavi Hamid
Stem Cell and Tissue Engineering Department, Istinye University, Istanbul, Turkey.
Department of Chemistry and Polymer Science, Istanbul Technical University, Istanbul, Turkey.
Cancer Med. 2025 Sep;14(17):e71224. doi: 10.1002/cam4.71224.
Ovarian cancer (OC) remains the most lethal gynecological malignancy, largely due to its late-stage diagnosis and nonspecific early symptoms. Advances in biomarker identification and machine learning offer promising avenues for improving early detection and prognosis. This review evaluates the role of biomarker-driven ML models in enhancing the early detection, risk stratification, and treatment planning of OC.
We analyzed literature spanning clinical, biomarker, and ML studies, emphasizing key diagnostic and prognostic biomarkers (e.g., CA-125, HE4) and ML techniques (e.g., Random Forest, XGBoost, Neural Networks). The review synthesizes findings from 17 investigations that integrate multi-modal data, including tumor markers, inflammatory, metabolic, and hematologic parameters, to assess ML model performance.
Biomarker-driven ML models significantly outperform traditional statistical methods, achieving AUC values exceeding 0.90 in diagnosing OC and distinguishing malignant from benign tumors. Ensemble methods (e.g., Random Forest, XGBoost) and deep learning approaches (e.g., RNNs) excel in classification accuracy (up to 99.82%), survival prediction (AUC up to 0.866), and treatment response forecasting. Combining CA-125 and HE4 with additional markers like CRP and NLR enhances specificity and sensitivity. However, limitations such as small sample sizes, lack of external validation, and exclusion of imaging/genomic data hinder clinical adoption.
Biomarker-driven ML represents a transformative approach for OC management, improving diagnostic precision and personalized care. Future research should prioritize multi-center validation, multi-omics integration, and explainable AI to overcome current challenges and enable real-world implementation, potentially reducing OC mortality through earlier detection and optimized treatment.
卵巢癌(OC)仍然是最致命的妇科恶性肿瘤,这主要归因于其晚期诊断和非特异性早期症状。生物标志物识别和机器学习的进展为改善早期检测和预后提供了有前景的途径。本综述评估了生物标志物驱动的机器学习模型在增强卵巢癌早期检测、风险分层和治疗规划中的作用。
我们分析了涵盖临床、生物标志物和机器学习研究的文献,重点关注关键诊断和预后生物标志物(如CA-125、HE4)和机器学习技术(如随机森林、XGBoost、神经网络)。该综述综合了17项整合多模态数据(包括肿瘤标志物、炎症、代谢和血液学参数)的研究结果,以评估机器学习模型的性能。
生物标志物驱动的机器学习模型显著优于传统统计方法,在诊断卵巢癌以及区分恶性与良性肿瘤方面,曲线下面积(AUC)值超过0.90。集成方法(如随机森林、XGBoost)和深度学习方法(如循环神经网络)在分类准确率(高达99.82%)、生存预测(AUC高达0.866)和治疗反应预测方面表现出色。将CA-125和HE4与CRP和NLR等其他标志物相结合可提高特异性和敏感性。然而,样本量小、缺乏外部验证以及排除影像/基因组数据等局限性阻碍了其临床应用。
生物标志物驱动的机器学习是卵巢癌管理的一种变革性方法,可提高诊断精度和个性化医疗。未来研究应优先进行多中心验证、多组学整合和可解释人工智能,以克服当前挑战并实现实际应用,有可能通过早期检测和优化治疗降低卵巢癌死亡率。