Suppr超能文献

预测癌症患者的死亡动态:一种针对死前事件的机器学习方法。

Predicting mortality dynamics in cancer patients: A machine learning approach to pre-death events.

作者信息

Yamamoto Tatsuki, Sakuragi Minoru, Tuji Yuzuha, Okamoto Yuji, Uchino Eiichiro, Yanagita Motoko, Muto Manabu, Kamada Mayumi, Okuno Yasushi

机构信息

Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

出版信息

PLoS One. 2025 Sep 9;20(9):e0331650. doi: 10.1371/journal.pone.0331650. eCollection 2025.

Abstract

Capturing the dynamic changes in patients' internal states as they approach death due to fatal diseases remains a major challenge in understanding individual pathologies and improving end-of-life care. However, existing methods primarily focus on specific test values or organ dysfunction markers, failing to provide a comprehensive view of the evolving internal state preceding death. To address this, we analyzed electronic health record (EHR) data from a single institution, including 8,976 cancer patients and 77 laboratory parameters, by constructing continuous mortality prediction models based on gradient-boosting decision trees and leveraging them for temporal analyses. We applied Shapley Additive exPlanations (SHAP) to assess the contribution of individual features over time and employed a SHAP-based clustering approach to classify patients into distinct subtypes based on mortality-related feature dynamics. Our analysis identified three distinct clinical patterns in patients near death, with key laboratory parameters-including albumin, C-reactive protein, blood urea nitrogen, and lactate dehydrogenase-playing a critical role. Dimensionality reduction techniques demonstrated that SHAP-based patient stratification effectively captured hidden variations in terminal disease progression, whereas traditional stratification using raw laboratory values failed to do so. These findings suggest that machine learning-driven temporal analysis can reveal clinically meaningful state transitions that conventional approaches overlook, offering new insights into the heterogeneous nature of terminal disease progression. This framework has the potential to enhance personalized risk stratification and optimize individualized end-of-life care strategies by identifying distinct patient trajectories that may inform more targeted interventions.

摘要

捕捉因致命疾病濒临死亡患者的内部状态动态变化,仍是理解个体病理状况和改善临终关怀方面的一项重大挑战。然而,现有方法主要聚焦于特定检测值或器官功能障碍标志物,未能全面呈现死亡前不断演变的内部状态。为解决这一问题,我们分析了来自单一机构的电子健康记录(EHR)数据,其中包括8976例癌症患者和77项实验室参数,通过构建基于梯度提升决策树的连续死亡率预测模型,并利用这些模型进行时间分析。我们应用夏普利值附加解释(SHAP)来评估个体特征随时间的贡献,并采用基于SHAP的聚类方法,根据与死亡率相关的特征动态将患者分为不同亚型。我们的分析确定了濒死患者的三种不同临床模式,关键实验室参数——包括白蛋白、C反应蛋白、血尿素氮和乳酸脱氢酶——发挥了关键作用。降维技术表明,基于SHAP的患者分层有效地捕捉了终末期疾病进展中的隐藏变异,而使用原始实验室值的传统分层则未能做到这一点。这些发现表明,机器学习驱动的时间分析可以揭示传统方法忽略的具有临床意义的状态转变,为终末期疾病进展的异质性提供新的见解。该框架有潜力通过识别可能为更有针对性的干预提供依据的不同患者轨迹,加强个性化风险分层并优化个性化临终关怀策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d564/12419616/507684dba044/pone.0331650.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验