Suppr超能文献

基于埃尔曼神经网络的同时优化与反馈学习算法的机动目标跟踪

Maneuvering Target Tracking Using Simultaneous Optimization and Feedback Learning Algorithm Based on Elman Neural Network.

作者信息

Liu Huajun, Xia Liwei, Wang Cailing

机构信息

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210014, China.

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15217, USA.

出版信息

Sensors (Basel). 2019 Apr 2;19(7):1596. doi: 10.3390/s19071596.

Abstract

Tracking maneuvering targets is a challenging problem for sensors because of the unpredictability of the target's motion. Unlike classical statistical modeling of target maneuvers, a simultaneous optimization and feedback learning algorithm for maneuvering target tracking based on the Elman neural network (ENN) is proposed in this paper. In the feedback strategy, a scale factor is learnt to adaptively tune the dynamic model's error covariance matrix, and in the optimization strategy, a corrected component of the state vector is learnt to refine the final state estimation. These two strategies are integrated in an ENN-based unscented Kalman filter (UKF) model called ELM-UKF. This filter can be trained online by the filter residual, innovation and gain matrix of the UKF to simultaneously achieve maneuver feedback and an optimized estimation. Monte Carlo experiments on synthesized radar data showed that our algorithm had better performance on filtering precision compared with most maneuvering target tracking algorithms.

摘要

由于目标运动的不可预测性,对传感器而言,跟踪机动目标是一个具有挑战性的问题。与传统的目标机动统计建模不同,本文提出了一种基于埃尔曼神经网络(ENN)的用于机动目标跟踪的同步优化与反馈学习算法。在反馈策略中,学习一个比例因子以自适应地调整动态模型的误差协方差矩阵,而在优化策略中,学习状态向量的校正分量以细化最终状态估计。这两种策略集成在一个基于ENN的无迹卡尔曼滤波器(UKF)模型中,称为ELM-UKF。该滤波器可以通过UKF的滤波残差、新息和增益矩阵进行在线训练,以同时实现机动反馈和优化估计。对合成雷达数据进行的蒙特卡罗实验表明,与大多数机动目标跟踪算法相比,我们的算法在滤波精度方面具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6386/6480454/171af18f36d7/sensors-19-01596-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验