a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan.
b National Institute of Advanced Industrial Science and Technology , AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL) , Tokyo , Japan.
Chronobiol Int. 2019 Jun;36(6):851-869. doi: 10.1080/07420528.2019.1594245. Epub 2019 Apr 16.
The expression rhythms of clock genes, such as Per1, Per2, Bmal1, and Rev-erb α, in mouse peripheral clocks, are entrained by a scheduled feeding paradigm. In terms of food composition, a carbohydrate-containing diet is reported to cause strong entrainment through insulin secretion. However, it is unknown whether human diets entrain peripheral circadian clocks. In this study, we used freeze-dried diets for type 2 diabetes (DB) and chronic kidney disease (CKD), as well as low-carbohydrate diets. After 24 h of fasting, PER2::LUC knock-in mice were given access to food for 2 days during inactive periods, and bioluminescence rhythm was then measured using an in vivo imaging system. AIN-93M, the control mouse diet with a protein:fat:carbohydrate (PFC) ratio of 14.7:9.5:75.8, caused a significant phase advance (7.3 h) in the liver clock compared with that in 24 h fasted mice, whereas human diets caused significant but smaller phase advances (4.7-6.2 h). Compared with healthy and high fat/sucrose-induced DB mice, adenine-induced CKD mice showed attenuation of a phase-advance with a normal diet. There were no significant differences in phase-advance values between human diets (normal, DB, and CKD). In addition, a normal-carbohydrate diet (PFC ratio of 20.3:23.3:56.4) and a low-carbohydrate diet (PFC ratio of 36.4:42.9:20.7) caused similar phase advances in peripheral clocks. The present results strongly suggest that scheduled feeding with human diets can cause phase advances in the peripheral clocks of not only healthy, but also DB and CKD mice. This discovery provides support to the food-induced entrainment of peripheral clocks in human clinical trials.
时钟基因(如 Per1、Per2、Bmal1 和 Rev-erbα)的表达节律在小鼠外周时钟中受到定时喂养范式的调节。就食物成分而言,含有碳水化合物的饮食通过胰岛素分泌引起强烈的同步。然而,尚不清楚人类饮食是否会调节外周生物钟。在这项研究中,我们使用了用于 2 型糖尿病 (DB) 和慢性肾脏病 (CKD) 的冻干饮食,以及低碳水化合物饮食。在禁食 24 小时后,PER2::LUC 敲入小鼠在非活动期内进食 2 天,然后使用体内成像系统测量生物发光节律。AIN-93M,对照小鼠饮食的蛋白质:脂肪:碳水化合物(PFC)比为 14.7:9.5:75.8,与 24 小时禁食小鼠相比,肝脏时钟明显提前(7.3 小时),而人类饮食则导致明显但较小的相位提前(4.7-6.2 小时)。与健康和高脂肪/蔗糖诱导的 DB 小鼠相比,腺嘌呤诱导的 CKD 小鼠的正常饮食引起的相位提前减弱。在人类饮食之间,相位提前值没有显著差异(正常、DB 和 CKD)。此外,正常碳水化合物饮食(PFC 比为 20.3:23.3:56.4)和低碳水化合物饮食(PFC 比为 36.4:42.9:20.7)在外周时钟中引起相似的相位提前。这些结果强烈表明,不仅健康小鼠,而且 DB 和 CKD 小鼠的外周时钟,都可以通过定时喂养人类饮食来引起相位提前。这一发现为人类临床试验中饮食诱导外周时钟同步提供了支持。