Suppr超能文献

基于级联两阶段支持向量机分类的糖尿病足溃疡图像面积测定

Area Determination of Diabetic Foot Ulcer Images Using a Cascaded Two-Stage SVM-Based Classification.

作者信息

Wang Lei, Pedersen Peder C, Agu Emmanuel, Strong Diane M, Tulu Bengisu

出版信息

IEEE Trans Biomed Eng. 2017 Sep;64(9):2098-2109. doi: 10.1109/TBME.2016.2632522. Epub 2016 Nov 23.

Abstract

The standard chronic wound assessment method based on visual examination is potentially inaccurate and also represents a significant clinical workload. Hence, computer-based systems providing quantitative wound assessment may be valuable for accurately monitoring wound healing status, with the wound area the best suited for automated analysis. Here, we present a novel approach, using support vector machines (SVM) to determine the wound boundaries on foot ulcer images captured with an image capture box, which provides controlled lighting and range. After superpixel segmentation, a cascaded two-stage classifier operates as follows: in the first stage, a set of k binary SVM classifiers are trained and applied to different subsets of the entire training images dataset, and incorrectly classified instances are collected. In the second stage, another binary SVM classifier is trained on the incorrectly classified set. We extracted various color and texture descriptors from superpixels that are used as input for each stage in the classifier training. Specifically, color and bag-of-word representations of local dense scale invariant feature transformation features are descriptors for ruling out irrelevant regions, and color and wavelet-based features are descriptors for distinguishing healthy tissue from wound regions. Finally, the detected wound boundary is refined by applying the conditional random field method. We have implemented the wound classification on a Nexus 5 smartphone platform, except for training which was done offline. Results are compared with other classifiers and show that our approach provides high global performance rates (average sensitivity = 73.3%, specificity = 94.6%) and is sufficiently efficient for a smartphone-based image analysis.

摘要

基于视觉检查的标准慢性伤口评估方法可能不准确,且临床工作量大。因此,提供定量伤口评估的计算机系统对于准确监测伤口愈合状况可能很有价值,其中伤口面积最适合进行自动分析。在此,我们提出一种新颖的方法,使用支持向量机(SVM)来确定用图像采集盒拍摄的足部溃疡图像上的伤口边界,该采集盒可提供可控的光照和范围。在超像素分割之后,一个级联的两阶段分类器按如下方式运行:在第一阶段,训练一组k个二元支持向量机分类器并将其应用于整个训练图像数据集的不同子集,收集分类错误的实例。在第二阶段,在分类错误的集合上训练另一个二元支持向量机分类器。我们从超像素中提取了各种颜色和纹理描述符,用作分类器训练各阶段的输入。具体而言,局部密集尺度不变特征变换特征的颜色和词袋表示是用于排除无关区域的描述符,而基于颜色和小波的特征是用于区分健康组织和伤口区域的描述符。最后,通过应用条件随机场方法对检测到的伤口边界进行细化。除了离线训练外,我们已在Nexus 5智能手机平台上实现了伤口分类。将结果与其他分类器进行比较,结果表明我们的方法具有较高的整体准确率(平均灵敏度 = 73.3%,特异性 = 94.6%),并且对于基于智能手机的图像分析而言效率足够高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验