Suppr超能文献

在基于选择抽样的观察性研究中估计总体平均治疗效果。

Estimating the Population Average Treatment Effect in Observational Studies with Choice-Based Sampling.

作者信息

Zhang Zhiwei, Hu Zonghui, Liu Chunling

机构信息

Department of Statistics, University of California, Riverside, CA,USA.

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD,USA.

出版信息

Int J Biostat. 2019 Apr 16;15(1):/j/ijb.2019.15.issue-1/ijb-2018-0093/ijb-2018-0093.xml. doi: 10.1515/ijb-2018-0093.

Abstract

We consider causal inference in observational studies with choice-based sampling, in which subject enrollment is stratified on treatment choice. Choice-based sampling has been considered mainly in the econometrics literature, but it can be useful for biomedical studies as well, especially when one of the treatments being compared is uncommon. We propose new methods for estimating the population average treatment effect under choice-based sampling, including doubly robust methods motivated by semiparametric theory. A doubly robust, locally efficient estimator may be obtained by replacing nuisance functions in the efficient influence function with estimates based on parametric models. The use of machine learning methods to estimate nuisance functions leads to estimators that are consistent and asymptotically efficient under broader conditions. The methods are compared in simulation experiments and illustrated in the context of a large observational study in obstetrics. We also make suggestions on how to choose the target proportion of treated subjects and the sample size in designing a choice-based observational study.

摘要

我们考虑基于选择抽样的观察性研究中的因果推断,其中研究对象的纳入是根据治疗选择进行分层的。基于选择的抽样主要在计量经济学文献中有所探讨,但它对生物医学研究也可能有用,特别是当所比较的治疗方法之一不常见时。我们提出了在基于选择抽样下估计总体平均治疗效果的新方法,包括由半参数理论推动的双重稳健方法。通过用基于参数模型的估计替换有效影响函数中的干扰函数,可以得到一个双重稳健、局部有效的估计量。使用机器学习方法估计干扰函数会得到在更广泛条件下一致且渐近有效的估计量。在模拟实验中对这些方法进行了比较,并在一项大型产科观察性研究的背景下进行了说明。我们还就如何在设计基于选择的观察性研究时选择治疗对象的目标比例和样本量提出了建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验