Suppr超能文献

甲烷八叠球菌的菌刺具有导电性。

The Archaellum of Methanospirillum hungatei Is Electrically Conductive.

机构信息

Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.

Institute for Applied Life Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.

出版信息

mBio. 2019 Apr 16;10(2):e00579-19. doi: 10.1128/mBio.00579-19.

Abstract

Microbially produced electrically conductive protein filaments are of interest because they can function as conduits for long-range biological electron transfer. They also show promise as sustainably produced electronic materials. Until now, microbially produced conductive protein filaments have been reported only for bacteria. We report here that the archaellum of is electrically conductive. This is the first demonstration that electrically conductive protein filaments have evolved in Furthermore, the structure of the archaellum was previously determined (N. Poweleit, P. Ge, H. N. Nguyen, R. R. O. Loo, et al., Nat Microbiol 2:16222, 2016, https://doi.org/10.1038/nmicrobiol.2016.222). Thus, the archaellum of is the first microbially produced electrically conductive protein filament for which a structure is known. We analyzed the previously published structure and identified a core of tightly packed phenylalanines that is one likely route for electron conductance. The availability of the archaellum structure is expected to substantially advance mechanistic evaluation of long-range electron transport in microbially produced electrically conductive filaments and to aid in the design of "green" electronic materials that can be microbially produced with renewable feedstocks. Microbially produced electrically conductive protein filaments are a revolutionary, sustainably produced, electronic material with broad potential applications. The design of new protein nanowires based on the known archaellum structure could be a major advance over the current empirical design of synthetic protein nanowires from electrically conductive bacterial pili. An understanding of the diversity of outer-surface protein structures capable of electron transfer is important for developing models for microbial electrical communication with other cells and minerals in natural anaerobic environments. Extracellular electron exchange is also essential in engineered environments such as bioelectrochemical devices and anaerobic digesters converting wastes to methane. The finding that the archaellum of is electrically conductive suggests that some archaea might be able to make long-range electrical connections with their external environment.

摘要

微生物产生的导电蛋白质丝很有研究价值,因为它们可以作为长程生物电子转移的导体。它们也有望成为可持续生产的电子材料。到目前为止,只报道了细菌产生的微生物导电蛋白丝。我们在此报告,的菌毛是导电的。这是第一个证明在古菌中进化出了导电蛋白质丝的例子。此外,的菌毛结构以前已经确定(N. Poweleit, P. Ge, H. N. Nguyen, R. R. O. Loo, 等人,Nat Microbiol 2:16222, 2016, https://doi.org/10.1038/nmicrobiol.2016.222)。因此,的菌毛是第一个已知结构的微生物产生的导电蛋白质丝。我们分析了以前发表的结构,并确定了一个紧密堆积的苯丙氨酸核心,这是电子传导的一个可能途径。的菌毛结构的可用性预计将大大推进对微生物产生的导电蛋白质丝中长程电子传输的机制评估,并有助于设计可以用可再生原料微生物生产的“绿色”电子材料。微生物产生的导电蛋白质丝是一种具有广泛潜在应用的革命性、可持续生产的电子材料。基于已知的菌毛结构设计新的蛋白质纳米线可能是对目前基于导电细菌菌毛的合成蛋白质纳米线的经验性设计的重大改进。对外表面蛋白结构进行电子转移的多样性的理解,对于开发微生物与自然厌氧环境中的其他细胞和矿物质进行电通信的模型非常重要。在生物电化学装置和将废物转化为甲烷的厌氧消化器等工程环境中,细胞外电子交换也是必不可少的。的菌毛是导电的这一发现表明,某些古菌可能能够与外部环境建立长程电连接。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验