Suppr超能文献

蛋白质纳米线:微生物世界的电气化,或许也是我们自身的电气化。

Protein Nanowires: the Electrification of the Microbial World and Maybe Our Own.

机构信息

Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA

Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, USA.

出版信息

J Bacteriol. 2020 Sep 23;202(20). doi: 10.1128/JB.00331-20.

Abstract

Electrically conductive protein nanowires appear to be widespread in the microbial world and are a revolutionary "green" material for the fabrication of electronic devices. Electrically conductive pili (e-pili) assembled from type IV pilin monomers have independently evolved multiple times in microbial history as have electrically conductive archaella (e-archaella) assembled from homologous archaellin monomers. A role for e-pili in long-range (micrometer) extracellular electron transport has been demonstrated in some microbes. The surprising finding of e-pili in syntrophic bacteria and the role of e-pili as conduits for direct interspecies electron transfer have necessitated a reassessment of routes for electron flux in important methanogenic environments, such as anaerobic digesters and terrestrial wetlands. Pilin monomers similar to those found in e-pili may also be a major building block of the conductive "cables" that transport electrons over centimeter distances through continuous filaments of cable bacteria consisting of a thousand cells or more. Protein nanowires harvested from microbes have many functional and sustainability advantages over traditional nanowire materials and have already yielded novel electronic devices for sustainable electricity production, neuromorphic memory, and sensing. e-pili can be mass produced with an chassis, providing a ready source of material for electronics as well as for studies on the basic mechanisms for long-range electron transport along protein nanowires. Continued exploration is required to better understand the electrification of microbial communities with microbial nanowires and to expand the "green toolbox" of sustainable materials for wiring and powering the emerging "Internet of things."

摘要

导电蛋白纳米线似乎在微生物世界中广泛存在,是一种革命性的“绿色”材料,可用于制造电子设备。由 IV 型菌毛单体组装而成的导电菌毛(e-pili),以及由同源菌毛蛋白单体组装而成的导电菌毛(e-archaella),在微生物进化历史中都独立进化了多次。在一些微生物中,e-pili 被证明在长距离(微米级)细胞外电子传递中发挥作用。在共生细菌中发现 e-pili 的惊人发现,以及 e-pili 作为直接种间电子转移的通道的作用,都需要重新评估在重要的产甲烷环境(如厌氧消化器和陆地湿地)中电子通量的途径。类似于 e-pili 中发现的菌毛单体,也可能是导电“电缆”的主要构建块,这些“电缆”通过由一千个或更多细胞组成的连续电缆细菌的细丝,在厘米距离内传输电子。从微生物中提取的蛋白纳米线具有许多功能和可持续性优势,超过了传统的纳米线材料,并已为可持续发电、神经形态记忆和传感等领域带来了新型电子设备。e-pili 可以在底盘上大规模生产,为电子学以及关于沿蛋白纳米线长距离电子传输的基本机制的研究提供了现成的材料来源。需要进一步探索,以更好地理解微生物纳米线使微生物群落电气化,并扩展可持续材料的“绿色工具箱”,为新兴的“物联网”布线和供电。

相似文献

4
An Chassis for Production of Electrically Conductive Protein Nanowires.用于生产导电蛋白质纳米线的底盘。
ACS Synth Biol. 2020 Mar 20;9(3):647-654. doi: 10.1021/acssynbio.9b00506. Epub 2020 Mar 11.
8
Microbial nanowires for bioenergy applications.微生物纳米线在生物能源中的应用。
Curr Opin Biotechnol. 2014 Jun;27:88-95. doi: 10.1016/j.copbio.2013.12.003. Epub 2013 Dec 31.
10
Protein Nanowires.蛋白质纳米线
Front Microbiol. 2019 Sep 24;10:2078. doi: 10.3389/fmicb.2019.02078. eCollection 2019.

引用本文的文献

3
Electron transfer in biological systems.生物系统中的电子转移。
J Biol Inorg Chem. 2024 Dec;29(7-8):641-683. doi: 10.1007/s00775-024-02076-8. Epub 2024 Oct 18.
9
A comprehensive history of motility and Archaellation in Archaea.古菌中运动性和鞭毛运动的综合历史。
FEMS Microbes. 2021 Apr 8;2:xtab002. doi: 10.1093/femsmc/xtab002. eCollection 2021.
10
Is biofilm formation intrinsic to the origin of life?生物膜的形成是否是生命起源的固有特征?
Environ Microbiol. 2023 Jan;25(1):26-39. doi: 10.1111/1462-2920.16179. Epub 2022 Sep 7.

本文引用的文献

3
An Ordered and Fail-Safe Electrical Network in Cable Bacteria.电缆细菌中的有序且容错的电子网络。
Adv Biosyst. 2020 Jul;4(7):e2000006. doi: 10.1002/adbi.202000006. Epub 2020 May 25.
4
Bioinspired bio-voltage memristors.仿生生物电压忆阻器。
Nat Commun. 2020 Apr 20;11(1):1861. doi: 10.1038/s41467-020-15759-y.
5
An Chassis for Production of Electrically Conductive Protein Nanowires.用于生产导电蛋白质纳米线的底盘。
ACS Synth Biol. 2020 Mar 20;9(3):647-654. doi: 10.1021/acssynbio.9b00506. Epub 2020 Mar 11.
6
Power generation from ambient humidity using protein nanowires.利用蛋白质纳米线从环境湿度中发电。
Nature. 2020 Feb;578(7796):550-554. doi: 10.1038/s41586-020-2010-9. Epub 2020 Feb 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验