Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands.
Nat Commun. 2024 Feb 17;15(1):1477. doi: 10.1038/s41467-024-45758-2.
Anaerobic methanotrophic (ANME) archaea are environmentally important, uncultivated microorganisms that oxidize the potent greenhouse gas methane. During methane oxidation, ANME archaea engage in extracellular electron transfer (EET) with other microbes, metal oxides, and electrodes through unclear mechanisms. Here, we cultivate ANME-2d archaea ('Ca. Methanoperedens') in bioelectrochemical systems and observe strong methane-dependent current (91-93% of total current) associated with high enrichment of 'Ca. Methanoperedens' on the anode (up to 82% of the community), as determined by metagenomics and transmission electron microscopy. Electrochemical and metatranscriptomic analyses suggest that the EET mechanism is similar at various electrode potentials, with the possible involvement of an uncharacterized short-range electron transport protein complex and OmcZ nanowires.
厌氧甲烷氧化古菌(ANME)是具有重要环境意义的未培养微生物,能够氧化强效温室气体甲烷。在甲烷氧化过程中,ANME 古菌通过不明机制与其他微生物、金属氧化物和电极进行细胞外电子转移(EET)。在这里,我们在生物电化学系统中培养 ANME-2d 古菌('Ca. Methanoperedens'),并观察到与阳极上 'Ca. Methanoperedens' 高富集(高达群落的 82%)相关的强烈甲烷依赖性电流(总电流的 91-93%),这是通过宏基因组学和透射电子显微镜确定的。电化学和元转录组学分析表明,在不同的电极电位下,EET 机制相似,可能涉及一种未表征的短程电子传输蛋白复合物和 OmcZ 纳米线。