Suppr超能文献

预测需要透析的急性肾损伤后的肾功能恢复情况。

Predicting Renal Recovery After Dialysis-Requiring Acute Kidney Injury.

作者信息

Lee Benjamin J, Hsu Chi-Yuan, Parikh Rishi, McCulloch Charles E, Tan Thida C, Liu Kathleen D, Hsu Raymond K, Pravoverov Leonid, Zheng Sijie, Go Alan S

机构信息

Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA.

Houston Kidney Consultants, Houston, Texas, USA.

出版信息

Kidney Int Rep. 2019 Jan 28;4(4):571-581. doi: 10.1016/j.ekir.2019.01.015. eCollection 2019 Apr.

Abstract

INTRODUCTION

After dialysis-requiring acute kidney injury (AKI-D), recovery of sufficient kidney function to discontinue dialysis is an important clinical and patient-oriented outcome. Predicting the probability of recovery in individual patients is a common dilemma.

METHODS

This cohort study examined all adult members of Kaiser Permanente Northern California who experienced AKI-D between January 2009 and September 2015 and had predicted inpatient mortality of <20%. Candidate predictors included demographic characteristics, comorbidities, laboratory values, and medication use. We used logistic regression and classification and regression tree (CART) approaches to develop and cross-validate prediction models for recovery.

RESULTS

Among 2214 patients with AKI-D, mean age was 67.1 years, 40.8% were women, and 54.0% were white; 40.9% of patients recovered. Patients who recovered were younger, had higher baseline estimated glomerular filtration rates (eGFR) and preadmission hemoglobin levels, and were less likely to have prior heart failure or chronic liver disease. Stepwise logistic regression applied to bootstrapped samples identified baseline eGFR, preadmission hemoglobin level, chronic liver disease, and age as the predictors most commonly associated with coming off dialysis within 90 days. Our final logistic regression model including these predictors had a correlation coefficient between observed and predicted probabilities of 0.97, with a c-index of 0.64. An alternate CART approach did not outperform the logistic regression model (c-index 0.61).

CONCLUSION

We developed and cross-validated a parsimonious prediction model for recovery after AKI-D with excellent calibration using routinely available clinical data. However, the model's modest discrimination limits its clinical utility. Further research is needed to develop better prediction tools.

摘要

引言

在需要透析的急性肾损伤(AKI-D)之后,恢复足够的肾功能以停止透析是一项重要的临床和以患者为导向的结果。预测个体患者恢复的可能性是一个常见的难题。

方法

这项队列研究检查了2009年1月至2015年9月期间在北加利福尼亚凯撒医疗集团经历AKI-D且预测住院死亡率<20%的所有成年成员。候选预测因素包括人口统计学特征、合并症、实验室检查值和药物使用情况。我们使用逻辑回归和分类与回归树(CART)方法来开发和交叉验证恢复预测模型。

结果

在2214例AKI-D患者中,平均年龄为67.1岁,40.8%为女性,54.0%为白人;40.9%的患者恢复。恢复的患者更年轻,基线估计肾小球滤过率(eGFR)和入院前血红蛋白水平更高,且患既往心力衰竭或慢性肝病的可能性更小。应用于自抽样样本的逐步逻辑回归确定基线eGFR、入院前血红蛋白水平、慢性肝病和年龄是与90天内停止透析最常相关的预测因素。我们包含这些预测因素的最终逻辑回归模型在观察到的和预测的概率之间的相关系数为0.97,c指数为0.64。另一种CART方法的表现不如逻辑回归模型(c指数为0.61)。

结论

我们使用常规可用的临床数据开发并交叉验证了一个用于AKI-D后恢复的简洁预测模型,该模型具有出色的校准。然而,该模型的适度区分能力限制了其临床应用。需要进一步研究以开发更好的预测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b8e/6451155/8fe1f96d95a4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验