Suppr超能文献

使用机器学习方法预测急性肾损伤的预后:一项系统评价。

Acute Kidney Injury Prognosis Prediction Using Machine Learning Methods: A Systematic Review.

作者信息

Lin Yu, Shi Tongyue, Kong Guilan

机构信息

National Institute of Health Data Science, Peking University, Beijing, China.

Advanced Institute of Information Technology, Peking University, Hangzhou, China.

出版信息

Kidney Med. 2024 Nov 15;7(1):100936. doi: 10.1016/j.xkme.2024.100936. eCollection 2025 Jan.

Abstract

RATIONALE & OBJECTIVE: Accurate estimation of in-hospital outcomes for patients with acute kidney injury (AKI) is crucial for aiding physicians in making optimal clinical decisions. We aimed to review prediction models constructed by machine learning methods for predicting AKI prognosis using administrative databases.

STUDY DESIGN

A systematic review following PRISMA guidelines.

SETTING & STUDY POPULATIONS: Adult patients diagnosed with AKI who are admitted to either hospitals or intensive care units.

SEARCH STRATEGY & SOURCES: We searched PubMed, Embase, Web of Science, Scopus, and Cumulative Index to Nursing and Allied Health for studies published between January 1, 2014 and February 29, 2024. Eligible studies employed machine learning models to predict in-hospital outcomes of AKI based on administrative databases.

DATA EXTRACTION

Extracted data included prediction outcomes and population, prediction models with performance, feature selection methods, and predictive features.

ANALYTICAL APPROACH

The included studies were qualitatively synthesized with assessments of quality and bias. We calculated the pooled model discrimination of different AKI prognoses using random-effects models.

RESULTS

Of 3,029 studies, 27 studies were eligible for qualitative review. In-hospital outcomes for patients with AKI included acute kidney disease, chronic kidney disease, renal function recovery or kidney failure, and mortality. Compared with models predicting the mortality of patients with AKI during hospitalization, the prediction performance of models on kidney function recovery was less accurate. Meta-analysis showed that machine learning methods outperformed traditional approaches in mortality prediction (area under the receiver operating characteristic curve, 0.831; 95% CI, 0.799-0.859 vs 0.772; 95% CI, 0.744-0.797). The overlapping predictive features for in-hospital mortality identified from ≥6 studies were age, serum creatinine level, serum urea nitrogen level, anion gap, and white blood cell count. Similarly, age, serum creatinine level, AKI stage, estimated glomerular filtration rate, and comorbid conditions were the common predictive features for kidney function recovery.

LIMITATIONS

Many studies developed prediction models within specific hospital settings without broad validation, restricting their generalizability and clinical application.

CONCLUSIONS

Machine learning models outperformed traditional approaches in predicting mortality for patients with AKI, although they are less accurate in predicting kidney function recovery. Overall, these models demonstrate significant potential to help physicians improve clinical decision making and patient outcomes.

REGISTRATION

CRD42024535965.

摘要

原理与目的

准确估计急性肾损伤(AKI)患者的院内结局对于帮助医生做出最佳临床决策至关重要。我们旨在回顾使用行政数据库构建的用于预测AKI预后的机器学习方法预测模型。

研究设计

遵循PRISMA指南进行系统评价。

设置与研究人群

入住医院或重症监护病房的成年AKI确诊患者。

检索策略与来源

我们检索了PubMed、Embase、Web of Science、Scopus以及护理与联合健康累积索引,以查找2014年1月1日至2024年2月29日期间发表的研究。符合条件的研究采用机器学习模型基于行政数据库预测AKI的院内结局。

数据提取

提取的数据包括预测结局和人群、具有性能的预测模型、特征选择方法以及预测特征。

分析方法

对纳入的研究进行定性综合,并评估质量和偏倚。我们使用随机效应模型计算不同AKI预后的合并模型辨别力。

结果

在3029项研究中,27项研究符合定性综述的条件。AKI患者的院内结局包括急性肾病、慢性肾病、肾功能恢复或肾衰竭以及死亡率。与预测住院期间AKI患者死亡率的模型相比,模型对肾功能恢复的预测性能不太准确。荟萃分析表明,机器学习方法在死亡率预测方面优于传统方法(受试者操作特征曲线下面积,0.831;95%CI,0.799 - 0.859对0.772;95%CI,0.744 - 0.797)。从≥6项研究中确定的院内死亡率重叠预测特征为年龄、血清肌酐水平、血清尿素氮水平、阴离子间隙和白细胞计数。同样,年龄、血清肌酐水平、AKI分期、估计肾小球滤过率和合并症是肾功能恢复的常见预测特征。

局限性

许多研究在特定医院环境中开发预测模型,未进行广泛验证,限制了其普遍性和临床应用。

结论

机器学习模型在预测AKI患者死亡率方面优于传统方法,尽管在预测肾功能恢复方面不太准确。总体而言,这些模型显示出帮助医生改善临床决策和患者结局的巨大潜力。

注册

CRD42024535965

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/801f/11699606/88fee5a962af/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验