Suppr超能文献

一种基于机器学习的方法,用于在阿片类药物滥用监测期间使用可穿戴生物传感器进行协作式非依从性检测。

A Machine Learning-based Approach for Collaborative Non-Adherence Detection during Opioid Abuse Surveillance using a Wearable Biosensor.

作者信息

Singh Rohitpal, Lewis Brittany, Chapman Brittany, Carreiro Stephanie, Venkatasubramanian Krishna

机构信息

Worcester Polytechnic Institute, Worcester, MA, U.S.A.

University of Massachusetts Medical School, Worcester, MA, U.S.A.

出版信息

Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap. 2019 Feb;5:310-318. doi: 10.5220/0007382503100318.

Abstract

Wearable biosensors can be used to monitor opioid use, a problem of dire societal consequence given the current opioid epidemic in the US. Such surveillance can prompt interventions that promote behavioral change. The effectiveness of biosensor-based monitoring is threatened by the potential of a patient's to the monitoring. We define CNA as the process of giving one's biosensor to someone else when surveillance is ongoing. The principal aim of this paper is to leverage accelerometer and blood volume pulse (BVP) measurements from a wearable biosensor and use machine-learning for the novel problem of CNA detection in opioid surveillance. We use accelerometer and BVP data collected from 11 patients who were brought to a hospital Emergency Department while undergoing naloxone treatment following an opioid overdose. We then used the data collected to build a personalized classifier for individual patients that capture the uniqueness of their blood volume pulse and triaxial accelerometer readings. In order to evaluate our detection approach, we simulate the presence (and absence) of CNA by replacing (or not replacing) snippets of the biosensor readings of one patient with another. Overall, we achieved an average detection accuracy of 90.96% when the collaborator was one of the other 10 patients in our dataset, and 86.78% when the collaborator was from a set of 14 users whose data had never been seen by our classifiers before.

摘要

可穿戴生物传感器可用于监测阿片类药物的使用情况,鉴于美国当前的阿片类药物流行,这是一个具有严重社会后果的问题。这种监测可以促使采取促进行为改变的干预措施。基于生物传感器的监测的有效性受到患者对监测产生抵触情绪的可能性的威胁。我们将“生物传感器转借行为”(CNA)定义为在监测进行期间将自己的生物传感器交给他人的过程。本文的主要目的是利用可穿戴生物传感器的加速度计和血容量脉搏(BVP)测量数据,并使用机器学习来解决阿片类药物监测中生物传感器转借行为检测这一全新问题。我们使用了从11名患者那里收集的加速度计和BVP数据,这些患者在阿片类药物过量服用后接受纳洛酮治疗时被送往医院急诊科。然后,我们使用收集到的数据为个体患者构建个性化分类器,以捕捉他们血容量脉搏和三轴加速度计读数的独特性。为了评估我们的检测方法,我们通过用另一名患者的生物传感器读数片段替换(或不替换)一名患者的读数片段来模拟生物传感器转借行为的存在(和不存在)情况。总体而言,当协作者是我们数据集中的其他10名患者之一时,我们实现了90.96%的平均检测准确率;当协作者来自一组我们的分类器之前从未见过其数据的14名用户时,平均检测准确率为86.78%。

相似文献

引用本文的文献

4
A Wearable Device Towards Automatic Detection and Treatment of Opioid Overdose.一种用于阿片类药物过量自动检测与治疗的可穿戴设备。
IEEE Trans Biomed Circuits Syst. 2024 Apr;18(2):396-407. doi: 10.1109/TBCAS.2023.3331272. Epub 2024 Apr 1.

本文引用的文献

8
Age-predicted maximal heart rate revisited.重新审视年龄预测的最大心率。
J Am Coll Cardiol. 2001 Jan;37(1):153-6. doi: 10.1016/s0735-1097(00)01054-8.
9
Survey of selected cardiologists for an operational definition of normal sinus heart rate.
Am J Cardiol. 1993 Aug 15;72(5):487-8. doi: 10.1016/0002-9149(93)91153-9.
10
Opioids and breathing.
J Appl Physiol (1985). 1985 Dec;59(6):1675-85. doi: 10.1152/jappl.1985.59.6.1675.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验