Suppr超能文献

通过理想原子层沉积的AlO隧道开关层提高Mg掺杂LiNbO薄膜的铁电性能。

Improved Ferroelectric Performance of Mg-Doped LiNbO Films by an Ideal Atomic Layer Deposited AlO Tunnel Switch Layer.

作者信息

Zhang Yan, Ren Qing Hua, Chai Xiao Jie, Jiang Jun, Yang Jian Guo, Jiang An Quan

机构信息

State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China.

State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.

出版信息

Nanoscale Res Lett. 2019 Apr 16;14(1):131. doi: 10.1186/s11671-019-2970-6.

Abstract

Bilayer structures composed of 5% Mg-doped LiNbO single-crystal films and ultrathin AlO layers with thickness ranging from 2 to 6 nm have been fabricated by using ion slicing technique combined with atomic layer deposition method. The transient domain switching current measurement results reveal that the P-V hysteresis loops are symmetry in type II mode with single voltage pulse per cycle, which may be attributed to the built-in electric field formed by asymmetric electrodes and compensation of an internal imprint field. Besides, the inlaid AlO, as an ideal tunnel switch layer, turns on during ferroelectric switching, but closes during the post-switching or non-switching under the applied pulse voltage. The AlO layer blocks the adverse effects such as by-electrode charge injection and improves the fatigue endurance properties of Mg-doped LiNbO ferroelectric capacitors. This study provides a possible way to improve the reliability properties of ferroelectric devices in the non-volatile memory application.

摘要

采用离子切片技术结合原子层沉积法制备了由5%镁掺杂铌酸锂单晶薄膜和厚度为2至6纳米的超薄氧化铝层组成的双层结构。瞬态畴开关电流测量结果表明,在每个周期单电压脉冲的II型模式下,P-V滞后回线是对称的,这可能归因于不对称电极形成的内建电场和内部印记场的补偿。此外,嵌入的氧化铝作为理想的隧道开关层,在铁电开关过程中开启,但在施加脉冲电压后的开关后或非开关状态下关闭。氧化铝层阻挡了诸如副电极电荷注入等不利影响,并提高了镁掺杂铌酸锂铁电电容器的疲劳耐久性。这项研究为提高非易失性存储器应用中铁电器件的可靠性提供了一种可能的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5db/6468035/39144ffca488/11671_2019_2970_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验