Suppr超能文献

后路脊柱内固定器械和生长棒植入物的机械性能:实验与计算研究。

Mechanical Performance of Posterior Spinal Instrumentation and Growing Rod Implants: Experimental and Computational Study.

机构信息

Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota.

Department of Orthopaedic Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota.

出版信息

Spine (Phila Pa 1976). 2019 Sep;44(18):1270-1278. doi: 10.1097/BRS.0000000000003061.

Abstract

STUDY DESIGN

Experimental and computational study of posterior spinal instrumentation and growing rod constructs per ASTM F1717-15 vertebrectomy methodology for static compressive bending.

OBJECTIVE

Assess mechanical performance of standard fusion instrumentation and growing rod constructs.

SUMMARY OF BACKGROUND DATA

Growing rod instrumentation utilizes fewer anchors and spans longer distances, increasing shared implant loads relative to fusion. There is a need to evaluate growing rod's mechanical performance. ASTM F1717-15 standard assesses performance of spinal instrumentation; however, effects of growing rods with side-by-side connectors have not been evaluated.

METHODS

Standard and growing rod constructs were tested per ASTM F1717-15 methodology; setup was modified for growing rod constructs to allow for connector offset. Three experimental groups (standard with active length 76 mm, and growing rods with active lengths 76 and 376 mm; n = 5/group) were tested; stiffness, yield load, and load at maximum displacement were calculated. Computational models were developed and used to locate stress concentrations.

RESULTS

For both constructs at 76 mm active length, growing rod stiffness (49 ± 0.8 N/mm) was significantly greater than standard (43 ± 0.4 N/mm); both were greater than growing rods at 376 mm (10 ± 0.3 N/mm). No significant difference in yield load was observed between growing rods (522 ± 12 N) and standard (457 ± 19 N) constructs of 76 mm. Growing rod constructs significantly decreased from 76 mm (522 ± 12 N) to 376 mm active length (200 ± 2 N). Maximum load of growing rods at 76 mm (1084 ± 11 N) was significantly greater than standard at 76 mm (1007 ± 7 N) and growing rods at 376 mm active length (392 ± 5 N). Simulations with active length of 76 mm were within 10% of experimental mechanical characteristics; stress concentrations were at the apex and cranial to connector-rod interaction for standard and growing rod models, respectively.

CONCLUSION

Growing rod constructs are stronger and stiffer than spinal instrumentation constructs; with an increased length accompanied a decrease in strength. Growing rod construct stress concentration locations observed during computational simulation are consistent with clinically observed failure locations.

LEVEL OF EVIDENCE

摘要

研究设计

根据 ASTM F1717-15 椎切除术方法,对后路脊柱内固定物和生长棒结构进行实验和计算研究,用于静态压缩弯曲。

研究目的

评估标准融合器械和生长棒结构的机械性能。

背景资料概要

生长棒器械使用的固定器和连接杆更少,但连接杆跨越的距离更长,与融合术相比,分担的植入物负荷更大。因此需要评估生长棒的机械性能。ASTM F1717-15 标准评估脊柱内固定物的性能;然而,尚未评估具有并排连接器的生长棒的效果。

方法

根据 ASTM F1717-15 方法对标准和生长棒结构进行测试;为生长棒结构修改设置,以允许连接器偏移。对三个实验组(标准,主动长度 76mm;生长棒,主动长度 76mm 和 376mm;每组 n=5)进行测试;计算刚度、屈服载荷和最大位移时的载荷。开发了计算模型,并用于定位应力集中点。

结果

在主动长度为 76mm 的两种结构中,生长棒的刚度(49±0.8N/mm)明显大于标准(43±0.4N/mm);两者均大于主动长度为 376mm 的生长棒(10±0.3N/mm)。在主动长度为 76mm 时,生长棒(522±12N)和标准(457±19N)结构的屈服载荷没有显著差异。生长棒结构从 76mm 主动长度(522±12N)显著下降至 376mm 主动长度(200±2N)。在主动长度为 76mm 时,生长棒的最大载荷(1084±11N)明显大于标准在 76mm 时(1007±7N)和生长棒在 376mm 时(392±5N)。在主动长度为 76mm 时的模拟结果与实验力学特性相差在 10%以内;标准和生长棒模型的应力集中点分别在顶点和连接器-杆连接处的上方。

结论

生长棒结构比脊柱内固定结构更强、更硬;长度增加的同时强度下降。在计算模拟中观察到的生长棒结构的应力集中位置与临床观察到的失效位置一致。

证据等级

5 级。

相似文献

5
The effects of rod contouring on spinal construct fatigue strength.棒材塑形对脊柱内固定器械疲劳强度的影响。
Spine (Phila Pa 1976). 2006 Jul 1;31(15):1680-7. doi: 10.1097/01.brs.0000224177.97846.00.
6
The inverse effects of load transfer and load sharing on axial compressive stiffness.
Spine J. 2001 Sep-Oct;1(5):324-9; discussion 330. doi: 10.1016/s1529-9430(01)00052-3.
10
Mechanical comparison of posterior instrumentation constructs for spinal fixation across the cervicothoracic junction.
Spine (Phila Pa 1976). 2007 May 1;32(10):1072-6. doi: 10.1097/01.brs.0000261490.90956.2b.

引用本文的文献

本文引用的文献

5
Early-onset scoliosis: current treatment.早发性脊柱侧弯:当前的治疗方法
Orthop Traumatol Surg Res. 2015 Feb;101(1 Suppl):S109-18. doi: 10.1016/j.otsr.2014.06.032. Epub 2015 Jan 23.
6
A classification of growth friendly spine implants.促进生长的脊柱植入物分类
J Pediatr Orthop. 2014 Apr-May;34(3):260-74. doi: 10.1097/BPO.0000000000000073.
7
Early onset scoliosis: modern treatment and results.早发性脊柱侧弯:现代治疗方法与结果
J Pediatr Orthop. 2012 Oct-Nov;32(7):647-57. doi: 10.1097/BPO.0b013e3182694f18.
8
Growing rod concepts: state of the art.生长棒技术:现状。
Eur Spine J. 2013 Mar;22 Suppl 2(Suppl 2):S118-30. doi: 10.1007/s00586-012-2327-7. Epub 2012 May 8.
9
Current treatment preferences for early onset scoliosis: a survey of POSNA members.
J Pediatr Orthop. 2011 Apr-May;31(3):326-30. doi: 10.1097/BPO.0b013e31820f77a0.
10
Complications of growth-sparing surgery in early onset scoliosis.早期发病脊柱侧凸的生长保留手术的并发症。
Spine (Phila Pa 1976). 2010 Dec 1;35(25):2193-204. doi: 10.1097/BRS.0b013e3181f070b5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验