Suppr超能文献

用于二维和三维血管快速感知分组的次黎曼距离的幂零逼近

Nilpotent Approximations of Sub-Riemannian Distances for Fast Perceptual Grouping of Blood Vessels in 2D and 3D.

作者信息

Bekkers Erik J, Chen Da, Portegies Jorg M

机构信息

1Centre for Analysis, Scientific computing and Applications (CASA), Eindhoven University of Technology, Eindhoven, The Netherlands.

2CNRS, UMR 7534, CEREMADE, University Paris Dauphine, PSL Research University, 75016 Paris, France.

出版信息

J Math Imaging Vis. 2018;60(6):882-899. doi: 10.1007/s10851-018-0787-z. Epub 2018 Jan 25.

Abstract

We propose an efficient approach for the grouping of local orientations (points on vessels) via nilpotent approximations of sub-Riemannian distances in the 2D and 3D roto-translation groups SE(2) and SE(3). In our distance approximations we consider homogeneous norms on nilpotent groups that locally approximate SE(), and which are obtained via the exponential and logarithmic map on SE(). In a qualitative validation we show that the norms provide accurate approximations of the true sub-Riemannian distances, and we discuss their relations to the fundamental solution of the sub-Laplacian on SE(). The quantitative experiments further confirm the accuracy of the approximations. Quantitative results are obtained by evaluating perceptual grouping performance of retinal blood vessels in 2D images and curves in challenging 3D synthetic volumes. The results show that (1) sub-Riemannian geometry is essential in achieving top performance and (2) grouping via the fast analytic approximations performs almost equally, or better, than data-adaptive fast marching approaches on and SE().

摘要

我们提出了一种有效的方法,通过二维和三维旋转平移群SE(2)和SE(3)中亚黎曼距离的幂零近似来对局部方向(血管上的点)进行分组。在我们的距离近似中,我们考虑幂零群上的齐次范数,这些范数在局部近似SE(),并且是通过SE()上的指数映射和对数映射得到的。在定性验证中,我们表明这些范数提供了真实亚黎曼距离的精确近似,并且我们讨论了它们与SE()上亚拉普拉斯算子基本解的关系。定量实验进一步证实了近似的准确性。通过评估二维图像中视网膜血管的感知分组性能以及具有挑战性的三维合成体中的曲线,获得了定量结果。结果表明:(1) 亚黎曼几何对于实现最佳性能至关重要;(2) 通过快速解析近似进行分组的性能几乎与数据自适应快速行进方法在 和SE()上的性能相同,甚至更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b8d/6438598/2dcb4d2f2546/10851_2018_787_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验