Suppr超能文献

通过线共现统计检索视网膜图像中具有挑战性的血管连接。

Retrieving challenging vessel connections in retinal images by line co-occurrence statistics.

作者信息

Abbasi-Sureshjani Samaneh, Zhang Jiong, Duits Remco, Ter Haar Romeny Bart

机构信息

Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.

Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.

出版信息

Biol Cybern. 2017 Aug;111(3-4):237-247. doi: 10.1007/s00422-017-0718-x. Epub 2017 May 9.

Abstract

Natural images contain often curvilinear structures, which might be disconnected, or partly occluded. Recovering the missing connection of disconnected structures is an open issue and needs appropriate geometric reasoning. We propose to find line co-occurrence statistics from the centerlines of blood vessels in retinal images and show its remarkable similarity to a well-known probabilistic model for the connectivity pattern in the primary visual cortex. Furthermore, the probabilistic model is trained from the data via statistics and used for automated grouping of interrupted vessels in a spectral clustering based approach. Several challenging image patches are investigated around junction points, where successful results indicate the perfect match of the trained model to the profiles of blood vessels in retinal images. Also, comparisons among several statistical models obtained from different datasets reveal their high similarity, i.e., they are independent of the dataset. On top of that the best approximation of the statistical model with the symmetrized extension of the probabilistic model on the projective line bundle is found with a least square error smaller than [Formula: see text]. Apparently, the direction process on the projective line bundle is a good continuation model for vessels in retinal images.

摘要

自然图像通常包含曲线结构,这些结构可能是不连续的,或者部分被遮挡。恢复不连续结构中缺失的连接是一个开放性问题,需要适当的几何推理。我们建议从视网膜图像中血管的中心线找到线共现统计信息,并展示其与初级视觉皮层中连通性模式的一个著名概率模型的显著相似性。此外,该概率模型通过统计从数据中训练得到,并用于基于谱聚类的方法中对中断血管进行自动分组。在交叉点周围研究了几个具有挑战性的图像块,成功的结果表明训练模型与视网膜图像中血管轮廓完美匹配。此外,从不同数据集获得的几个统计模型之间的比较揭示了它们的高度相似性,即它们与数据集无关。除此之外,在射影线丛上用概率模型的对称扩展对统计模型进行最佳逼近,其最小二乘误差小于[公式:见原文]。显然,射影线丛上的方向过程是视网膜图像中血管的一个良好延续模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acdd/5506202/5b3107127b1a/422_2017_718_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验