Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
Institute of Medical Biometry and Statistics, Medical Faculty and Medical Center, University of Freiburg, Freiburg, Germany.
Stat Med. 2019 Jul 20;38(16):2992-3012. doi: 10.1002/sim.8158. Epub 2019 Apr 17.
The Mantel-Haenszel (MH) method has been used for decades to synthesize data obtained from studies that compare two interventions with respect to a binary outcome. It has been shown to perform better than the inverse-variance method or Peto's odds ratio when data is sparse. Network meta-analysis (NMA) is increasingly used to compare the safety of medical interventions, synthesizing, eg, data on mortality or serious adverse events. In this setting, sparse data occur often and yet there is to-date, no extension of the MH method for the case of NMA. In this paper, we fill this gap by presenting a MH-NMA method for odds ratios. Similarly to the pairwise MH method, we assume common treatment effects. We implement our approach in R, and we provide freely available easy-to-use routines. We illustrate our approach using data from two previously published networks. We compare our results to those obtained from three other approaches to NMA, namely, NMA with noncentral hypergeometric likelihood, an inverse-variance NMA, and a Bayesian NMA with a binomial likelihood. We also perform simulations to assess the performance of our method and compare it with alternative methods. We conclude that our MH-NMA method offers a reliable approach to the NMA of binary outcomes, especially in the case or sparse data, and when the assumption of methodological and clinical homogeneity is justifiable.
Mantel-Haenszel (MH) 法已被用于数十年,用于综合比较两种干预措施在二分类结局方面的研究数据。当数据稀疏时,它被证明比Inverse-variance 法或 Peto 的比值比表现更好。网络荟萃分析(NMA)越来越多地用于比较医学干预措施的安全性,例如综合死亡率或严重不良事件的数据。在这种情况下,稀疏数据经常出现,但迄今为止,尚无 MH 法在 NMA 情况下的扩展。本文通过提出一种用于比值比的 MH-NMA 方法来填补这一空白。与两两 MH 方法类似,我们假设共同的治疗效果。我们在 R 中实现了我们的方法,并提供了免费易用的例程。我们使用来自两个先前发表的网络的数据来说明我们的方法。我们将我们的结果与从其他三种 NMA 方法获得的结果进行比较,即具有非中心超几何似然的 NMA、Inverse-variance NMA 和具有二项式似然的贝叶斯 NMA。我们还进行了模拟,以评估我们的方法的性能并将其与替代方法进行比较。我们得出结论,我们的 MH-NMA 方法为二分类结局的 NMA 提供了一种可靠的方法,尤其是在数据稀疏的情况下,并且当方法学和临床同质性的假设是合理的情况下。