Suppr超能文献

CRISPR 导向的基因编辑催化精确的基因片段替换,为多靶点定点突变提供了一种新方法。

CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement Enabling a Novel Method for Multiplex Site-Directed Mutagenesis.

机构信息

1 Department of Medical Sciences, University of Delaware, Newark, Delaware; Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel.

2 Gene Editing Insitute, Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, Delaware; Hadassah Ein-Kerem Medical Center Campus, Jerusalem, Israel.

出版信息

CRISPR J. 2019 Apr;2:121-132. doi: 10.1089/crispr.2018.0054.

Abstract

Much of our understanding of eukaryotic genes function comes from studies of the activity of their mutated forms or allelic variability. Mutations have helped elucidate how members of an intricate pathway function in relation to each other and how they operate in the context of the regulatory circuitry that surrounds them. A PCR-based site-directed mutagenesis technique is often used to engineer these variants. While these tools are efficient, they are not without significant limitations, most notably off-site mutagenesis, limited scalability, and lack of multiplexing capabilities. To overcome many of these limitations, we now describe a novel method for the introduction of both simple and complex gene mutations in plasmid DNA by using DNA editing. A specifically designed pair of CRISPR-Cas12a ribonucleoprotein complexes are used to execute site-specific double-strand breaks on plasmid DNA, enabling the excision of a defined DNA fragment. Donor DNA replacement is catalyzed by a mammalian cell-free extract through microhomology annealing of short regions of single-stranded DNA complementarity; we term this method CRISPR-directed DNA mutagenesis (CDM). The products of CDM are plasmids bearing precise donor fragments with specific modifications and CDM could be used for mutagenesis in larger constructs such as Bacterial Artificial Chromosome (BACs) or Yeast Artificial Chromosome (YACs). We further show that this reaction can be multiplexed so that product molecules with multiple site-specific mutations and site-specific deletions can be generated in the same reaction mixture. Importantly, the CDM method produces fewer unintended mutations in the target gene as compared to the standard site-directed mutagenesis assay; CDM produces no unintended mutations throughout the plasmid backbone. Lastly, this system recapitulates the multitude of reactions that take place during CRISPR-directed gene editing in mammalian cells and affords the opportunity to study the mechanism of action of CRISPR-directed gene editing in mammalian cells by visualizing a multitude of genetic products.

摘要

我们对真核基因功能的认识在很大程度上来自于对其突变形式或等位基因变异活性的研究。突变有助于阐明复杂途径中的成员如何相互作用,以及它们如何在围绕它们的调节回路的上下文中运作。基于 PCR 的定点诱变技术通常用于设计这些变体。虽然这些工具效率很高,但它们并非没有重大限制,最明显的是脱靶诱变、有限的可扩展性和缺乏多路复用能力。为了克服许多这些限制,我们现在描述了一种通过 DNA 编辑在质粒 DNA 中引入简单和复杂基因突变的新方法。一对专门设计的 CRISPR-Cas12a 核糖核蛋白复合物用于在质粒 DNA 上执行特定位置的双链断裂,从而能够切除定义的 DNA 片段。供体 DNA 的替换由哺乳动物无细胞提取物通过短单链 DNA 互补性区域的微同源性退火来催化;我们将这种方法称为 CRISPR 指导的 DNA 诱变 (CDM)。CDM 的产物是带有特定修饰的精确供体片段的质粒,CDM 可用于更大的构建体如细菌人工染色体 (BAC) 或酵母人工染色体 (YAC) 的诱变。我们进一步表明,这种反应可以多路复用,因此可以在同一个反应混合物中生成具有多个特定位置突变和特定位置缺失的产物分子。重要的是,与标准的定点诱变测定相比,CDM 方法在靶基因中产生的意外突变较少;CDM 在整个质粒骨架中不产生意外突变。最后,该系统再现了在哺乳动物细胞中进行的 CRISPR 指导的基因编辑过程中发生的多种反应,并提供了通过可视化多种遗传产物来研究 CRISPR 指导的基因编辑在哺乳动物细胞中的作用机制的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验