Gene Editing Institute, ChristianaCare Health System, 550 S College Ave, Suite 100A, 2nd Floor, Newark, DE, 19713, USA.
Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA.
Sci Rep. 2022 May 17;12(1):8132. doi: 10.1038/s41598-022-11808-2.
Gene correction is often referred to as the gold standard for precise gene editing and while CRISPR-Cas systems continue to expand the toolbox for clinically relevant genetic repair, mechanistic hurdles still hinder widespread implementation. One of the most prominent challenges to precise CRISPR-directed point mutation repair centers on the prevalence of on-site mutagenesis, wherein insertions and deletions appear at the targeted site following correction. Here, we introduce a pathway model for Homology Directed Correction, specifically point mutation repair, which enables a foundational analysis of genetic tools and factors influencing precise gene editing. To do this, we modified an in vitro gene editing system which utilizes a cell-free extract, CRISPR-Cas RNP and donor DNA template to catalyze point mutation repair. We successfully direct correction of four unique point mutations which include two unique nucleotide mutations at two separate targeted sites and visualize the repair profiles resulting from these reactions. This extension of the cell-free gene editing system to model point mutation repair may provide insight for understanding the factors influencing precise point mutation correction.
基因校正通常被称为精确基因编辑的金标准,尽管 CRISPR-Cas 系统继续扩展临床相关基因修复的工具包,但机制障碍仍然阻碍了广泛的实施。精确的 CRISPR 指导的点突变修复最突出的挑战之一集中在现场诱变的流行,其中在纠正后,插入和缺失出现在靶向位点。在这里,我们引入同源定向校正的途径模型,特别是点突变修复,这为遗传工具和影响精确基因编辑的因素提供了基础分析。为此,我们修改了一种体外基因编辑系统,该系统利用无细胞提取物、CRISPR-Cas RNP 和供体 DNA 模板来催化点突变修复。我们成功地指导了四个独特的点突变的校正,其中包括两个位于两个不同靶向位点的独特核苷酸突变,并可视化了这些反应产生的修复谱。无细胞基因编辑系统对模型点突变修复的这种扩展可能为理解影响精确点突变校正的因素提供了一些见解。