Suppr超能文献

通过自动评估上肢运动对小脑性共济失调进行定量评估。

Quantitative Evaluation of Cerebellar Ataxia Through Automated Assessment of Upper Limb Movements.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2019 May;27(5):1081-1091. doi: 10.1109/TNSRE.2019.2911657. Epub 2019 Apr 16.

Abstract

Cerebellar damage can result in peripheral dysfunction manifesting as poor and inaccurate coordination, irregular movements, and tremors. Conventionally, the severity assessment of Cerebellar ataxia (CA) is primarily based on expert clinical opinion and hence likely to be subjective. In order to establish inter-rater concordance with enhanced reliability and effectiveness in the assessment of upper limb function, a novel automated system employing Microsoft Kinect is considered to capture the motion of the patient's finger for objective assessment. This essentially mimics the commonly used finger tracking task clinically assessed through subjective observation. A clinical trial was conducted involving 42 CA patients and 18 age-matched healthy subjects. The relevant kinematically diagnostic features of CA patients allowed a classification accuracy of 97% using the Bayesian Quadratic Discriminant Analysis (QDA). The correlation (severity) between the extracted features and the independent severity scores from expert clinicians were collated to achieve a high correlation ( r = 0.86 , ) with the Scale for the Assessment and Rating of Ataxia (SARA). The proposed system can efficiently generate objective information of severity as a result of features that are not necessarily observable during standard bedside clinical testing. Furthermore, the superior performance of the Ballistic (finger chase) test indeed supports the credence of the Ramp test redundancy that exists among the wider clinical community.

摘要

小脑损伤可导致外周功能障碍,表现为协调不良、动作不规则和震颤。传统上,小脑共济失调 (CA) 的严重程度评估主要基于专家临床意见,因此可能存在主观性。为了在评估上肢功能方面建立评分者间的一致性,提高可靠性和有效性,考虑采用新型自动化系统,利用 Microsoft Kinect 捕捉患者手指的运动进行客观评估。这本质上模拟了临床上通过主观观察评估的常用手指跟踪任务。进行了一项涉及 42 名 CA 患者和 18 名年龄匹配的健康受试者的临床试验。使用贝叶斯二次判别分析 (QDA),CA 患者的相关运动学诊断特征可实现 97%的分类准确性。提取的特征与专家临床医生独立严重程度评分之间的相关性 (严重程度) 进行了整理,以实现与共济失调评估和评分量表 (SARA) 的高度相关性 ( r = 0.86, )。该系统可以有效地生成严重程度的客观信息,因为这些信息不一定在标准床旁临床测试中观察到。此外,弹道 (手指追逐) 测试的优越性能确实支持了更广泛的临床界存在的斜坡测试冗余的可信度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验