Suppr超能文献

伸手动作的分解使共济失调的检测和测量成为可能。

Decomposition of Reaching Movements Enables Detection and Measurement of Ataxia.

机构信息

College of Information and Computer Sciences, University of Massachusetts Amherst, 140 Governors Dr, Amherst, MA, USA.

Department of Rehabilitation and Movement Sciences, Rutgers University, 65 Bergen St, Newark, NJ, USA.

出版信息

Cerebellum. 2021 Dec;20(6):811-822. doi: 10.1007/s12311-021-01247-6. Epub 2021 Mar 2.

Abstract

Technologies that enable frequent, objective, and precise measurement of ataxia severity would benefit clinical trials by lowering participation barriers and improving the ability to measure disease state and change. We hypothesized that analyzing characteristics of sub-second movement profiles obtained during a reaching task would be useful for objectively quantifying motor characteristics of ataxia. Participants with ataxia (N=88), participants with parkinsonism (N=44), and healthy controls (N=34) performed a computer tablet version of the finger-to-nose test while wearing inertial sensors on their wrists. Data features designed to capture signs of ataxia were extracted from participants' decomposed wrist velocity time-series. A machine learning regression model was trained to estimate overall ataxia severity, as measured by the Brief Ataxia Rating Scale (BARS). Classification models were trained to distinguish between ataxia participants and controls and between ataxia and parkinsonism phenotypes. Movement decomposition revealed expected and novel characteristics of the ataxia phenotype. The distance, speed, duration, morphology, and temporal relationships of decomposed movements exhibited strong relationships with disease severity. The regression model estimated BARS with a root mean square error of 3.6 points, r = 0.69, and moderate-to-excellent reliability. Classification models distinguished between ataxia participants and controls and ataxia and parkinsonism phenotypes with areas under the receiver-operating curve of 0.96 and 0.89, respectively. Movement decomposition captures core features of ataxia and may be useful for objective, precise, and frequent assessment of ataxia in home and clinic environments.

摘要

能够频繁、客观、精确地测量共济失调严重程度的技术将通过降低参与障碍和提高测量疾病状态和变化的能力,使临床试验受益。我们假设,分析在伸手任务中获得的亚秒级运动特征可以用于客观量化共济失调的运动特征。患有共济失调的参与者(N=88)、患有帕金森病的参与者(N=44)和健康对照者(N=34)在手腕上佩戴惯性传感器的情况下,使用平板电脑进行了指鼻测试。从参与者分解的手腕速度时间序列中提取了旨在捕捉共济失调迹象的数据特征。使用机器学习回归模型来训练以估计总体共济失调严重程度,如简要共济失调评定量表(BARS)所测量的。分类模型用于区分共济失调参与者和对照组以及区分共济失调和帕金森病表型。运动分解揭示了共济失调表型的预期和新颖特征。分解运动的距离、速度、持续时间、形态和时间关系与疾病严重程度有很强的关系。回归模型估计 BARS 的均方根误差为 3.6 分,r=0.69,可靠性为中等到良好。分类模型以 0.96 和 0.89 的接收器操作曲线下面积区分了共济失调参与者和对照组以及共济失调和帕金森病表型。运动分解捕获了共济失调的核心特征,可能有助于在家中和诊所环境中对共济失调进行客观、精确和频繁的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5329/8674173/f0916056b52d/12311_2021_1247_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验