Das P, Blazit J D, Tencé M, Zagonel L F, Auad Y, Lee Y H, Ling X Y, Losquin A, Colliex C, Stéphan O, García de Abajo F J, Kociak M
Laboratoire de Physique des Solides, Université Paris-Sud, CNRS-UMR 8502, Orsay 91405, France.
"Gleb Wataghin" Institute of Physics, University of Campinas - UNICAMP, Campinas, São Paulo 13083-859, Brazil.
Ultramicroscopy. 2019 Aug;203:44-51. doi: 10.1016/j.ultramic.2018.12.011. Epub 2018 Dec 18.
We report on a novel way of performing stimulated electron energy-loss and energy-gain spectroscopy (sEELS/sEEGS) experiments that does not require a pulsed gun. In this scheme, a regular scanning transmission electron microscope (STEM) equipped with a conventional continuous electron gun is fitted with a modified EELS detector and a light injector in the object chamber. The modification of the EELS detector allows one to expose the EELS camera during tunable time intervals that can be synchronized with nanosecond laser pulses hitting the sample, therefore allowing us to collect only those electrons that have interacted with the sample under light irradiation. Using ∼ 5 ns laser pulses of ∼ 2 eV photon energy on various plasmonic silver samples, we obtain evidence of sEELS/sEEGS through the emergence of up to two loss and gain peaks in the spectra at ± 2 and ± 4 eV. Because this approach does not involve any modification of the gun, our method retains the original performances of the microscope in terms of energy resolution and spectral imaging with and without light injection. Compared to pulsed-gun techniques, our method is mainly limited to a perturbative regime (typically no more that one gain event per incident electron), which allows us to observe resonant effects, in particular when the plasmon energy of a silver nanostructure matches the laser photon energy. In this situation, EELS and EEGS signals are enhanced in proportion to n+1 and n, respectively, where n is the average plasmon population due to the external illumination. The n term is associated with stimulated loss and gain processes, and the term of 1 corresponds to conventional (spontaneous) loss. The EELS part of the spectrum is therefore an incoherent superposition of spontaneous and stimulated EEL events. This is confirmed by a proper quantum-mechanical description of the electron/light/plasmon system incorporating light-plasmon and plasmon-electron interactions, as well as inelastic plasmon decay.
我们报告了一种进行受激电子能量损失和能量增益光谱(sEELS/sEEGS)实验的新方法,该方法不需要脉冲枪。在这个方案中,配备传统连续电子枪的常规扫描透射电子显微镜(STEM)在样品室中安装了一个改进的EELS探测器和一个光注入器。EELS探测器的改进使得人们能够在与照射到样品上的纳秒激光脉冲同步的可调时间间隔内曝光EELS相机,从而使我们能够仅收集那些在光照射下与样品相互作用的电子。在各种等离子体银样品上使用光子能量约为2 eV的约5 ns激光脉冲,我们通过在光谱中出现高达两个分别位于±2 eV和±4 eV的损失峰和增益峰获得了sEELS/sEEGS的证据。由于这种方法不涉及对枪的任何修改,我们方法在能量分辨率和有无光注入时的光谱成像方面保留了显微镜的原始性能。与脉冲枪技术相比,我们的方法主要限于微扰 regime(通常每个入射电子不超过一个增益事件),这使我们能够观察共振效应,特别是当银纳米结构的等离子体能量与激光光子能量匹配时。在这种情况下,EELS和EEGS信号分别与n + 1和n成比例增强,其中n是由于外部照明导致的平均等离子体数量。n项与受激损失和增益过程相关,而1项对应于传统(自发)损失。因此,光谱的EELS部分是自发和受激EEL事件的非相干叠加。这通过对包含光 - 等离子体和等离子体 - 电子相互作用以及非弹性等离子体衰变的电子/光/等离子体系统进行适当的量子力学描述得到了证实。