Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA.
FASEB J. 2019 Aug;33(8):8745-8758. doi: 10.1096/fj.201801832RR. Epub 2019 Apr 19.
A single pool of multipotent retinal progenitor cells give rise to the diverse cell types within the mammalian retina. Such cellular diversity is due to precise control of various cellular processes like cell specification, proliferation, differentiation, and maturation. Circadian clock genes can control the expression of key regulators of cell cycle progression and therefore can synchronize the cell cycle state of a heterogeneous population of cells. Here we show that the protein encoded by the circadian clock gene brain and muscle arnt-like protein-1 () is expressed in the embryonic retina and is required to regulate the timing of cell cycle exit. Accordingly, loss of during retinal neurogenesis results in increased S-phase entry and delayed cell cycle exit. Disruption in cell cycle kinetics affects the timely generation of the appropriate neuronal population thus leading to an overall decrease in the number of retinal ganglion cells, amacrine cells, and an increase in the number of the late-born type II cone bipolar cells as well as the Müller glia. Additionally, the mislocalized Müller cells are observed in the photoreceptor layer in the conditional mutants. These changes affect the functional integrity of the visual circuitry as we report a significant delay in visual evoked potential implicit time in the retina-specific null animals. Our results demonstrate that is required to maintain the balance between the neural and glial cells in the embryonic retina by coordinating the timing of cell cycle entry and exit. Thus, plays an essential role during retinal neurogenesis affecting both development and function of the mature retina.-Sawant, O. B., Jidigam, V. K., Fuller, R. D., Zucaro, O. F., Kpegba, C., Yu, M., Peachey, N. S., Rao, S. The circadian clock gene is required to control the timing of retinal neurogenesis and lamination of Müller glia in the mouse retina.
单一的多能视网膜祖细胞池产生哺乳动物视网膜内的各种细胞类型。这种细胞多样性是由于对各种细胞过程的精确控制,如细胞特化、增殖、分化和成熟。生物钟基因可以控制细胞周期进程的关键调节因子的表达,因此可以使异质细胞群体的细胞周期状态同步。在这里,我们表明生物钟基因 brain and muscle arnt-like protein-1 () 编码的蛋白在胚胎视网膜中表达,并需要调节细胞周期退出的时间。因此,在视网膜神经发生过程中丧失 会导致 S 期进入增加和细胞周期退出延迟。细胞周期动力学的破坏会影响适当神经元群体的适时产生,从而导致视网膜节细胞、无长突细胞数量总体减少,以及迟发性 II 型 cone 双极细胞和 Müller 胶质细胞数量增加。此外,在 条件性突变体中观察到细胞周期动力学的破坏会影响适当神经元群体的适时产生,从而导致视网膜节细胞、无长突细胞数量总体减少,以及迟发性 II 型 cone 双极细胞和 Müller 胶质细胞数量增加。此外,在 条件性突变体中观察到细胞周期动力学的破坏会影响适当神经元群体的适时产生,从而导致视网膜节细胞、无长突细胞数量总体减少,以及迟发性 II 型 cone 双极细胞和 Müller 胶质细胞数量增加。此外,在 条件性突变体中观察到细胞周期动力学的破坏会影响适当神经元群体的适时产生,从而导致视网膜节细胞、无长突细胞数量总体减少,以及迟发性 II 型 cone 双极细胞和 Müller 胶质细胞数量增加。此外,在 条件性突变体中观察到 mislocalized Müller 细胞在光感受器层中。这些变化影响视觉电路的功能完整性,正如我们报告的那样,在视网膜特异性 缺失动物中,视觉诱发电位潜伏期有明显延迟。我们的结果表明, 通过协调细胞周期进入和退出的时间,在维持胚胎视网膜中神经细胞和神经胶质细胞之间的平衡方面是必需的。因此, 在视网膜神经发生过程中发挥重要作用,影响成熟视网膜的发育和功能。