Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, France.
Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, University Cadi Ayyad, Marrakech, Morocco.
BMC Biol. 2023 Jun 26;21(1):146. doi: 10.1186/s12915-023-01647-6.
The mammalian retina contains an autonomous circadian clock that controls various aspects of retinal physiology and function, including dopamine (DA) release by amacrine cells. This neurotransmitter plays a critical role in retina development, visual signalling, and phase resetting of the retinal clock in adulthood. Interestingly, bidirectional regulation between dopaminergic cells and melanopsin-expressing retinal ganglion cells has been demonstrated in the adult and during development. Additionally, the adult melanopsin knockout mouse (Opn4 ) exhibits a shortening of the endogenous period of the retinal clock. However, whether DA and / or melanopsin influence the retinal clock mechanism during its maturation is still unknown.
Using wild-type Per2 and melanopsin knockout (Opn4 ::Per2 ) mice at different postnatal stages, we found that the retina generates self-sustained circadian rhythms from postnatal day 5 in both genotypes and that the ability to express these rhythms emerges in the absence of external time cues. Intriguingly, only in wild-type explants, DA supplementation lengthened the endogenous period of the clock during the first week of postnatal development through both D1- and D2-like dopaminergic receptors. Furthermore, the blockade of spontaneous cholinergic retinal waves, which drive DA release in the early developmental stages, shortened the period and reduced the light-induced phase shift of the retinal clock only in wild-type retinas.
These data suggest that DA modulates the molecular core of the clock through melanopsin-dependent regulation of acetylcholine retinal waves, thus offering an unprecedented role of DA and melanopsin in the endogenous functioning and the light response of the retinal clock during development.
哺乳动物的视网膜中存在自主的生物钟,控制着视网膜的各种生理和功能,包括无长突细胞释放多巴胺(DA)。这种神经递质在视网膜发育、视觉信号传递以及成年期视网膜生物钟的相位重置中起着关键作用。有趣的是,在成年期和发育过程中,已经证明了多巴胺能细胞和表达黑视蛋白的视网膜神经节细胞之间存在双向调节。此外,成年期黑视蛋白敲除小鼠(Opn4 )表现出自发周期的视网膜生物钟的内源性周期缩短。然而,DA 和/或黑视蛋白是否在其成熟过程中影响视网膜生物钟机制仍不清楚。
使用不同出生后阶段的野生型 Per2 和黑视蛋白敲除(Opn4 ::Per2 )小鼠,我们发现视网膜在两种基因型中从出生后第 5 天开始产生自主的昼夜节律,并且在没有外部时间线索的情况下出现表达这些节律的能力。有趣的是,只有在野生型外植体中,DA 通过 D1-和 D2 样多巴胺能受体补充,在出生后发育的第一周内延长了生物钟的内源性周期。此外,自发的胆碱能视网膜波的阻断,它在早期发育阶段驱动 DA 的释放,仅在野生型视网膜中缩短了周期并减少了光诱导的视网膜生物钟的相位偏移。
这些数据表明,DA 通过黑视蛋白依赖性调节乙酰胆碱视网膜波来调节生物钟的分子核心,从而为 DA 和黑视蛋白在发育过程中视网膜生物钟的内源性功能和光反应提供了前所未有的作用。