Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467.
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467
Proc Natl Acad Sci U S A. 2019 May 7;116(19):9220-9229. doi: 10.1073/pnas.1900761116. Epub 2019 Apr 19.
The product selectivity of many heterogeneous electrocatalytic processes is profoundly affected by the liquid side of the electrocatalytic interface. The electrocatalytic reduction of CO to hydrocarbons on Cu electrodes is a prototypical example of such a process. However, probing the interactions of surface-bound intermediates with their liquid reaction environment poses a formidable experimental challenge. As a result, the molecular origins of the dependence of the product selectivity on the characteristics of the electrolyte are still poorly understood. Herein, we examined the chemical and electrostatic interactions of surface-adsorbed CO with its liquid reaction environment. Using a series of quaternary alkyl ammonium cations ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]), we systematically tuned the properties of this environment. With differential electrochemical mass spectrometry (DEMS), we show that ethylene is produced in the presence of [Formula: see text] and [Formula: see text] cations, whereas this product is not synthesized in [Formula: see text]- and [Formula: see text]-containing electrolytes. Surface-enhanced infrared absorption spectroscopy (SEIRAS) reveals that the cations do not block CO adsorption sites and that the cation-dependent interfacial electric field is too small to account for the observed changes in selectivity. However, SEIRAS shows that an intermolecular interaction between surface-adsorbed CO and interfacial water is disrupted in the presence of the two larger cations. This observation suggests that this interaction promotes the hydrogenation of surface-bound CO to ethylene. Our study provides a critical molecular-level insight into how interactions of surface species with the liquid reaction environment control the selectivity of this complex electrocatalytic process.
许多多相电催化过程的产物选择性受到电催化界面液相的深远影响。Cu 电极上 CO 电化学还原为烃类是此类过程的典型例子。然而,探测表面结合中间体与它们的液相反应环境之间的相互作用提出了一个艰巨的实验挑战。因此,产物选择性对电解质特性的依赖性的分子起源仍然知之甚少。在此,我们研究了表面吸附的 CO 与其液相反应环境之间的化学和静电相互作用。使用一系列季铵阳离子([Formula: see text]、[Formula: see text]、[Formula: see text]和[Formula: see text]),我们系统地调节了这个环境的性质。通过差分电化学质谱法(DEMS),我们表明,在[Formula: see text]和[Formula: see text]阳离子存在的情况下会生成乙烯,而在[Formula: see text]和[Formula: see text]含有的电解质中则不会合成该产物。表面增强红外吸收光谱(SEIRAS)表明,阳离子不会阻塞 CO 吸附位点,而且阳离子依赖性界面电场太小,无法解释观察到的选择性变化。然而,SEIRAS 表明,在两种较大的阳离子存在下,表面吸附的 CO 与界面水之间的分子间相互作用被破坏。这一观察结果表明,这种相互作用促进了表面结合的 CO 氢化生成乙烯。我们的研究提供了对表面物种与液相反应环境相互作用如何控制这一复杂电催化过程选择性的关键分子水平的见解。