Suppr超能文献

推动大数据时代计算毒理学的发展:化学毒性的人工智能数据驱动和机制驱动建模。

Advancing Computational Toxicology in the Big Data Era by Artificial Intelligence: Data-Driven and Mechanism-Driven Modeling for Chemical Toxicity.

出版信息

Chem Res Toxicol. 2019 Apr 15;32(4):536-547. doi: 10.1021/acs.chemrestox.8b00393. Epub 2019 Mar 25.

Abstract

In 2016, the Frank R. Lautenberg Chemical Safety for the 21st Century Act became the first US legislation to advance chemical safety evaluations by utilizing novel testing approaches that reduce the testing of vertebrate animals. Central to this mission is the advancement of computational toxicology and artificial intelligence approaches to implementing innovative testing methods. In the current big data era, the terms volume (amount of data), velocity (growth of data), and variety (the diversity of sources) have been used to characterize the currently available chemical, in vitro, and in vivo data for toxicity modeling purposes. Furthermore, as suggested by various scientists, the variability (internal consistency or lack thereof) of publicly available data pools, such as PubChem, also presents significant computational challenges. The development of novel artificial intelligence approaches based on public massive toxicity data is urgently needed to generate new predictive models for chemical toxicity evaluations and make the developed models applicable as alternatives for evaluating untested compounds. In this procedure, traditional approaches (e.g., QSAR) purely based on chemical structures have been replaced by newly designed data-driven and mechanism-driven modeling. The resulting models realize the concept of adverse outcome pathway (AOP), which can not only directly evaluate toxicity potentials of new compounds, but also illustrate relevant toxicity mechanisms. The recent advancement of computational toxicology in the big data era has paved the road to future toxicity testing, which will significantly impact on the public health.

摘要

2016 年,《21 世纪弗兰克·R·劳滕伯格化学安全法案》成为第一项推进化学安全评估的美国立法,该法案利用减少脊椎动物测试的新型测试方法。这项任务的核心是推进计算毒理学和人工智能方法,以实施创新的测试方法。在当前的大数据时代,术语“量(数据量)”、“速(数据增长)”和“多样性(来源多样性)”已被用于描述目前可用于毒性建模目的的化学、体外和体内数据。此外,正如多位科学家所建议的,PubChem 等公共数据池的可变性(内部一致性或缺乏内部一致性)也带来了重大的计算挑战。迫切需要基于公共海量毒性数据开发新的人工智能方法,以生成新的化学毒性评估预测模型,并使开发的模型能够作为评估未测试化合物的替代方法。在这个过程中,传统的方法(例如,QSAR)纯粹基于化学结构,已经被新设计的数据驱动和机制驱动的建模所取代。由此产生的模型实现了不良结局途径(AOP)的概念,不仅可以直接评估新化合物的毒性潜力,还可以说明相关的毒性机制。计算毒理学在大数据时代的最新进展为未来的毒性测试铺平了道路,这将对公众健康产生重大影响。

相似文献

1
Advancing Computational Toxicology in the Big Data Era by Artificial Intelligence: Data-Driven and Mechanism-Driven Modeling for Chemical Toxicity.
Chem Res Toxicol. 2019 Apr 15;32(4):536-547. doi: 10.1021/acs.chemrestox.8b00393. Epub 2019 Mar 25.
2
Big Data and Artificial Intelligence Modeling for Drug Discovery.
Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:573-589. doi: 10.1146/annurev-pharmtox-010919-023324. Epub 2019 Sep 13.
3
[AI-based QSAR Modeling for Prediction of Active Compounds in MIE/AOP].
Yakugaku Zasshi. 2020;140(4):499-505. doi: 10.1248/yakushi.19-00190-4.
4
Nonanimal Models for Acute Toxicity Evaluations: Applying Data-Driven Profiling and Read-Across.
Environ Health Perspect. 2019 Apr;127(4):47001. doi: 10.1289/EHP3614.
5
Machine Learning and Artificial Intelligence in Toxicological Sciences.
Toxicol Sci. 2022 Aug 25;189(1):7-19. doi: 10.1093/toxsci/kfac075.
6
Using a hybrid read-across method to evaluate chemical toxicity based on chemical structure and biological data.
Ecotoxicol Environ Saf. 2019 Aug 30;178:178-187. doi: 10.1016/j.ecoenv.2019.04.019. Epub 2019 Apr 17.
8
Profiling animal toxicants by automatically mining public bioassay data: a big data approach for computational toxicology.
PLoS One. 2014 Jun 20;9(6):e99863. doi: 10.1371/journal.pone.0099863. eCollection 2014.
10
Safer chemicals using less animals: kick-off of the European ONTOX project.
Toxicology. 2021 Jun 30;458:152846. doi: 10.1016/j.tox.2021.152846.

引用本文的文献

2
Developmental toxicity: artificial intelligence-powered assessments.
Trends Pharmacol Sci. 2025 Jun;46(6):486-502. doi: 10.1016/j.tips.2025.04.005. Epub 2025 May 15.
3
Machine Learning for Toxicity Prediction Using Chemical Structures: Pillars for Success in the Real World.
Chem Res Toxicol. 2025 May 19;38(5):759-807. doi: 10.1021/acs.chemrestox.5c00033. Epub 2025 May 2.
5
Advancing the Spatiotemporal Dimension of Wildlife-Pollution Interactions.
Environ Sci Technol Lett. 2025 Mar 18;12(4):358-370. doi: 10.1021/acs.estlett.5c00042. eCollection 2025 Apr 8.
6
Recent Development, Applications, and Patents of Artificial Intelligence in Drug Design and Development.
Curr Drug Discov Technol. 2025 Feb 10. doi: 10.2174/0115701638364199250123062248.
8
Overview of Computational Toxicology Methods Applied in Drug and Green Chemical Discovery.
J Xenobiot. 2024 Dec 4;14(4):1901-1918. doi: 10.3390/jox14040101.
10
Advancing Toxicity Predictions: A Review on to Extrapolation in Next-Generation Risk Assessment.
Environ Health (Wash). 2024 May 9;2(7):499-513. doi: 10.1021/envhealth.4c00043. eCollection 2024 Jul 19.

本文引用的文献

1
Database resources of the National Center for Biotechnology Information.
Nucleic Acids Res. 2019 Jan 8;47(D1):D23-D28. doi: 10.1093/nar/gky1069.
2
3
Big-data and machine learning to revamp computational toxicology and its use in risk assessment.
Toxicol Res (Camb). 2018 May 1;7(5):732-744. doi: 10.1039/c8tx00051d. eCollection 2018 Sep 1.
4
httk: R Package for High-Throughput Toxicokinetics.
J Stat Softw. 2017 Jul 17;79(4):1-26. doi: 10.18637/jss.v079.i04.
5
Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
Mol Pharm. 2018 Oct 1;15(10):4361-4370. doi: 10.1021/acs.molpharmaceut.8b00546. Epub 2018 Aug 28.
6
Comprehensive Analyses and Prioritization of Tox21 10K Chemicals Affecting Mitochondrial Function by in-Depth Mechanistic Studies.
Environ Health Perspect. 2018 Jul 26;126(7):077010. doi: 10.1289/EHP2589. eCollection 2018 Jul.
8
QSAR Modeling of ToxCast Assays Relevant to the Molecular Initiating Events of AOPs Leading to Hepatic Steatosis.
J Chem Inf Model. 2018 Aug 27;58(8):1501-1517. doi: 10.1021/acs.jcim.8b00297. Epub 2018 Jul 26.
9
Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity.
Toxicol In Vitro. 2018 Oct;52:131-145. doi: 10.1016/j.tiv.2018.06.009. Epub 2018 Jun 20.
10
A big data approach to the concordance of the toxicity of pharmaceuticals in animals and humans.
Regul Toxicol Pharmacol. 2018 Jul;96:94-105. doi: 10.1016/j.yrtph.2018.04.018. Epub 2018 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验